【題目】如圖,在平面坐標系中,A(a,0),B(b,0),C(x,y)且滿足(a+b)2+|a﹣b﹣4|=0,y=+2.
(1)求三角形ABC的面積;
(2)若過B作BD∥AC交y軸于D,且AE、DE平分∠CAB、∠ODB,如圖,求∠AED的度數(shù);
(3)在y軸上是否存在點P,①使得△ABC和△ACP的面積相等,若存在,求出P點的坐標:若不存在,請說明理由;②若△ACP的面積是△ABC面積的2018倍成立,直接寫出P點的坐標;若不存在,請說明理由.
【答案】(1)S△ABC=4;(2)∠AED=45°;(3)存在.①P點坐標為(0,3)或(0,﹣1),②P點坐標為(0,4037)或(0,﹣4035),理由見解析.
【解析】
(1)根據(jù)非負數(shù)的性質(zhì)得到a=﹣b,a﹣b+4=0,解得a=﹣2,b=2,再根據(jù)y=+2,求出x=2,y=2,則A(﹣2,0),B(2,0),C(2,2),即可計算出三角形ABC的面積=4;
(2)由于CB∥y軸,BD∥AC,則∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,過E作EF∥AC,則BD∥AC∥EF,然后利用角平分線的定義可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=×90°=45°;
(3)先根據(jù)待點系數(shù)法確定直線AC的解析式為y=x+1,則G點坐標為(0,1),即可得出PG=|t﹣1|,
①利用S△PAC=S△APG+S△CPG=4進行計算,即可得出結論;
②利用S△PAC=S△APG+S△CPG=4×2018進行計算,即可得出結論.
(1)∵(a+b)2+|a﹣b+4|=0,
∴a=﹣b,a﹣b+4=0,
∴a=﹣2,b=2,
∵y=+2,
∴x=2,y=2,
∴A(﹣2,0),B(2,0),C(2,2)
∴CB⊥AB,
∴S△ABC=×4×2=4;
(2)如圖1,∵CB∥y軸,BD∥AC,
∴∠CAB=∠ABD,
∴∠3+∠4+∠5+∠6=90°,
過E作EF∥AC,
∵BD∥AC,
∴BD∥AC∥EF,
∵AE,DE分別平分∠CAB,∠ODB,
∴∠3=∠4=∠1,∠5=∠6=∠2,
∴∠AED=∠1+∠2=×90°=45°;
(3)存在.理由如下:如圖2,
設P點坐標為(0,t),直線AC的解析式為y=kx+b,
把A(﹣2,0)、C(2,2)代入得 ,解得 ,
∴直線AC的解析式為y=x+1,
∴G點坐標為(0,1),
∴PG=|t﹣1|,
①∵△ABC和△ACP的面積相等,
∴S△PAC=S△APG+S△CPG=|t﹣1|×2+|t﹣1|×2=4,解得t=3或t=﹣1,
∴P點坐標為(0,3)或(0,﹣1),
②∵△ACP的面積是△ABC面積的2018倍,
∴S△PAC=S△APG+S△CPG=|t﹣1|×2+|t﹣1|×2=4×2018,解得t=4037或t=﹣4035,
∴P點坐標為(0,4037)或(0,﹣4035),
科目:初中數(shù)學 來源: 題型:
【題目】請把以下證明過程補充完整:
已知:如圖,∠A=∠F,∠C=∠D.點B,E分別在線段AC,DF上,對∠1=∠2進行說理.
理由:∵∠A=∠F(已知)
∴______∥FD (______)
∴∠D=______(兩直線平行,內(nèi)錯角相等)
∵∠C=∠D(已知)
∴______=∠C(等量代換)
∴______∥______(同位角相等,兩直線平行)
∴∠1=∠3(______)
∵∠2=∠3(______)
∴∠1=∠2(等量代換).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠接受了20天內(nèi)生產(chǎn)1200臺GH型電子產(chǎn)品的總任務.已知每臺GH型產(chǎn)品由4個G型裝置和3個H型裝置配套組成.工廠現(xiàn)有80名工人,每個工人每天能加工6個G型裝置或3個H型裝置.工廠將所有工人分成兩組同時開始加工,每組分別加工一種裝置,并要求每天加工的G、H型裝置數(shù)量正好組成GH型產(chǎn)品.
(1)按照這樣的生產(chǎn)方式,工廠每天能配套組成多少套GH型電子產(chǎn)品?
(2)工廠補充10名新工人,這些新工人只能獨立進行G型裝置的加工,且每人每天只能加工4個G型裝置,則補充新工人后每天能配套生產(chǎn)多少產(chǎn)品?
(3)為了在規(guī)定期限內(nèi)完成總任務,請問至少需要補充多少名(2)中的新工人才能在規(guī)定期內(nèi)完成總任務?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】科技發(fā)展,社會進步.中國己進入特色社會主義新時代,為實現(xiàn)“兩個一百年”奮斗目標和中華民族偉大復興的中國夢,需要人人奮斗.青少年時期是良好品格形成和知識積累的黃金時期.為此,大數(shù)據(jù)平臺針對部分中學生品格表現(xiàn)和學習狀況進行統(tǒng)計詞查繪制如下統(tǒng)計圖表,請根據(jù)圖中提供的信息解決下列問題,類別:A.品格健全,成績優(yōu)異:B.尊敬師長,積極進。C.自控力差,被動學習:D.沉迷奢玩,消極自卑
(1)本次調(diào)查被抽取的樣本容量為 ;
(2)“自控力差,被動學習”的同學有 人,并補全條形統(tǒng)計圖;
(3)樣本中D類所在扇形的圓心角為 度;
(4)試根據(jù)你所在學校的總人數(shù),估算D類學生人數(shù),并談談你的想法.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知x+ =3,則下列三個等式:①x2+ =7,②x﹣ ,③2x2﹣6x=﹣2中,正確的個數(shù)有( )
A.0個
B.1個
C.2個
D.3個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知邊長為m的正方形面積為12,則下列關于m的說法中:①m2是有理數(shù);②m的值滿足m2﹣12=0;③m滿足不等式組;④m是12的算術平方根. 正確有幾個( 。
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為12cm的等邊三角形ABC中,點P從點A開始沿AB邊向點B以每秒鐘1cm的速度移動,點Q從點B開始沿BC邊向點C以每秒鐘2cm的速度移動.若P、Q分別從A、B同時出發(fā),其中任意一點到達目的地后,兩點同時停止運動,求:
(1)經(jīng)過6秒后,BP= cm,BQ= cm;
(2)經(jīng)過幾秒后,△BPQ是直角三角形?
(3)經(jīng)過幾秒△BPQ的面積等于cm2?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中∠ACB=90°,CD是AB邊上的高,∠BAC的角平分線AF交CD于E,則△CEF必為( )
A.等腰三角形B.等邊三角形C.直角三角形D.等腰直角三角形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com