如圖,在△ABC中∠A=60°,BM⊥AC于點(diǎn)M,CN⊥AB于點(diǎn)N,P為BC邊的中點(diǎn),連接PM,PN,則下列結(jié)論:①PM=PN;②;③△PMN為等邊三角形;④當(dāng)∠ABC=45°時(shí),BN=PC.其中正確的個(gè)數(shù)是( 。
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
考點(diǎn):
相似三角形的判定與性質(zhì);等邊三角形的判定;直角三角形斜邊上的中線.
分析:
根據(jù)直角三角形斜邊上的中線等于斜邊的一半可判斷①正確;
先證明△ABM∽△ACN,再根據(jù)相似三角形的對(duì)應(yīng)邊成比例可判斷②正確;
先根據(jù)直角三角形兩銳角互余的性質(zhì)求出∠ABM=∠ACN=30°,再根據(jù)三角形的內(nèi)角和定理求出∠BCN+∠CBM=60°,然后根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和求出∠BPN+∠CPM=120°,從而得到∠MPN=60°,又由①得PM=PN,根據(jù)有一個(gè)角是60°的等腰三角形是等邊三角形可判斷③正確;
當(dāng)∠ABC=45°時(shí),∠BCN=45°,由P為BC邊的中點(diǎn),得出BN=PB=PC,判斷④正確.
解答:
解:①∵BM⊥AC于點(diǎn)M,CN⊥AB于點(diǎn)N,P為BC邊的中點(diǎn),
∴PM=BC,PN=BC,
∴PM=PN,正確;
②在△ABM與△ACN中,
∵∠A=∠A,∠AMB=∠ANC=90°,
∴△ABM∽△ACN,
∴,正確;
③∵∠A=60°,BM⊥AC于點(diǎn)M,CN⊥AB于點(diǎn)N,
∴∠ABM=∠ACN=30°,
在△ABC中,∠BCN+∠CBM═180°﹣60°﹣30°×2=60°,
∵點(diǎn)P是BC的中點(diǎn),BM⊥AC,CN⊥AB,
∴PM=PN=PB=PC,
∴∠BPN=2∠BCN,∠CPM=2∠CBM,
∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,
∴∠MPN=60°,
∴△PMN是等邊三角形,正確;
④當(dāng)∠ABC=45°時(shí),∵CN⊥AB于點(diǎn)N,
∴∠BNC=90°,∠BCN=45°,
∴BN=CN,
∵P為BC邊的中點(diǎn),
∴PN⊥BC,△BPN為等腰直角三角形
∴BN=PB=PC,正確.
故選D.
點(diǎn)評(píng):
本題主要考查了直角三角形30°角所對(duì)的直角邊等于斜邊的一半的性質(zhì),相似三角形、等邊三角形、等腰直角三角形的判定與性質(zhì),等腰三角形三線合一的性質(zhì),仔細(xì)分析圖形并熟練掌握性質(zhì)是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com