精英家教網(wǎng)如圖:線段AB的端點(diǎn)在邊長(zhǎng)為1的小正方形網(wǎng)格的格點(diǎn)上,現(xiàn)將線段AB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到線段AC.
(1)請(qǐng)你在所給的網(wǎng)格中畫出線段AC及點(diǎn)B經(jīng)過(guò)的路徑;
(2)若將此網(wǎng)格放在一平面直角坐標(biāo)系中,已知點(diǎn)A的坐標(biāo)為(1,3),則點(diǎn)C的坐標(biāo)為
 

(3)線段AB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到線段AC,若有一張與線段AB掃過(guò)的區(qū)域形狀、大小相同的紙片,將它圍成一個(gè)幾何體的側(cè)面,則該幾何體底面圓的半徑為
 

(4)在圖中確定格點(diǎn)E,并畫出一個(gè)以A、B、C、E為頂點(diǎn)的四邊形,使其為中心對(duì)稱圖形.
分析:(1)根據(jù)旋轉(zhuǎn)圖形前后不發(fā)生任何變化,找出AB坐在的矩形,找出C的位置;
(2)根據(jù)A的坐標(biāo),確定住原點(diǎn)的坐標(biāo),從而得出C點(diǎn)的坐標(biāo);
(3)根據(jù)圓錐與扇形各部分對(duì)應(yīng)情況可以求出;
(4)利用中心對(duì)稱圖形的性質(zhì),可以做一個(gè)正方形.
解答:精英家教網(wǎng)解:(1)點(diǎn)B經(jīng)過(guò)的路徑是以點(diǎn)A為圓心,AB長(zhǎng)為半徑的圓。

(2)∵點(diǎn)A的坐標(biāo)為(1,3),
∴C點(diǎn)的坐標(biāo)為:(5,0);

(3)它圍成一個(gè)幾何體的側(cè)面是圓錐形狀.
∵n=90°,r=5,
∴扇形的弧長(zhǎng)公式:L=
nπr
180
=2πR,
90×π×5
180
=2πR,精英家教網(wǎng)
解得:R=1.25;

(4)當(dāng)AE∥BC,AB∥CE時(shí),四邊形ABCE是平行四邊形,
∴它是中心對(duì)稱圖形.
點(diǎn)評(píng):此題主要考查了圖形的旋轉(zhuǎn)和圓錐與扇形的各部分對(duì)應(yīng)情況以及中心對(duì)稱圖形的性質(zhì)等知識(shí),此題綜合性較強(qiáng)考查知識(shí)較多,同學(xué)們應(yīng)特別注意.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,線段AB的端點(diǎn)是4×5的正方形網(wǎng)格的格點(diǎn),若再在網(wǎng)格的格點(diǎn)中取一點(diǎn)C,使△ABC成為等腰三角形,則符合條件的點(diǎn)C的個(gè)數(shù)是( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,線段AB的端點(diǎn)在邊長(zhǎng)為1的小正方形網(wǎng)格的格點(diǎn)上,現(xiàn)將線段AB繞點(diǎn)A按逆時(shí)針?lè)?img alt="精英家教網(wǎng)" src="http://thumb.zyjl.cn/pic3/upload/images/201112/74/487d58b0.png" style="vertical-align:middle;FLOAT:right;" />向旋轉(zhuǎn)90°得到線段AC.
(1)請(qǐng)你在所給的網(wǎng)格中畫出線段AC及點(diǎn)B經(jīng)過(guò)的路徑;
(2)若將此網(wǎng)格放在一平面直角坐標(biāo)系中,已知點(diǎn)A的坐標(biāo)為(1,3),點(diǎn)B的坐標(biāo)為(-2,-1),則點(diǎn)C的坐標(biāo)為
 
;
(3)線段AB在旋轉(zhuǎn)到線段AC的過(guò)程中,線段AB掃過(guò)的區(qū)域記為圖形T,若將圖形T圍成一個(gè)幾何體的側(cè)面,求該幾何體底面圓的半徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

33、如圖,線段AB的端點(diǎn)坐標(biāo)為A(2,-1),B(3,1).試畫出AB向左平移4個(gè)單位長(zhǎng)度的圖形,寫出A、B對(duì)應(yīng)點(diǎn)C、D的坐標(biāo),并判斷A、B、C、D四點(diǎn)組成的四邊形的形狀.(不必說(shuō)明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•金東區(qū)模擬)如圖,線段AB的端點(diǎn)在邊長(zhǎng)為1的小正方形網(wǎng)格的格點(diǎn)上,現(xiàn)將線段AB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)90°.得到線段AC.
(1)若將此網(wǎng)格放在一平面直角坐標(biāo)系中,已知點(diǎn)A(1,3),點(diǎn)B(-2,-1〕,直接寫出點(diǎn)C的坐標(biāo)
(2)線段AB在旋轉(zhuǎn)到線段AC的過(guò)程中,求線段AB掃過(guò)的區(qū)域的面積;
(3)若利用(2)中得到的區(qū)域紙片,將它圍成一個(gè)幾何體的側(cè)面,求該幾何體底面圓的半徑長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案