精英家教網 > 初中數學 > 題目詳情
已知:如圖,P是正方形ABCD內一點,在正方形ABCD外有一點E,滿足∠ABE=∠CBP,BE=BP.
(1)求證:△CPB≌△AEB;
(2)求證:PB⊥BE;
(3)若PA:PB=1:2,∠APB=135°,求cos∠PAE的值.

【答案】分析:(1),(2)根據條件∠ABE=∠CBP,BE=BP,BC=AB,可證△CBP≌△ABE,所以∠PBE=∠ABE+∠ABP=∠CBP+∠ABP=90°,即PB⊥BE.
(3)連接PE,則BE=BP,∠PBE=90°,∠BPE=45°,設AP為k,利用題中的比例式和勾股定理可求得PE=2k,AE=3k,所以cos∠PAE==
解答:(1)證明:∵四邊形ABCD是正方形,
∴BC=AB,(1分)
∵∠CBP=∠ABE,BP=BE,
∴△CBP≌△ABE.

(2)證明:∵∠CBP=∠ABE,
∴∠PBE=∠ABE+∠ABP=∠CBP+∠ABP=90°,
∴PB⊥BE.
(1)、(2)兩小題可以一起證明.
證明:∵∠CBP=∠ABE,
∴∠PBE=∠ABE+∠ABP(1分)
=∠CBP+∠ABP
=90°(2分)
∴PB⊥BE.(3分)
以B為旋轉中心,把△CBP按順時針方向旋轉90°.(4分)
∵BC=AB,∠CBA=∠PBE=90°,BE=BP.(5分)
∴△CBP與△ABE重合,
∴△CBP≌△ABE.(6分)

(3)解:連接PE,
∵BE=BP,∠PBE=90°,
∴∠BPE=45°,(7分)
設AP為k,則BP=BE=2k,
∴PE2=8k2,(8分)
∴PE=2k,
∵∠BPA=135°,∠BPE=45°,
∴∠APE=90°,(9分)
∴AE=3k,
在直角△APE中:cos∠PAE==.(10分)
點評:主要考查了正方形的性質和全等三角形的判定及性質的運用.解題的關鍵是利用全等的性質得到相等的角或線段,用同一個未知數表示所求的線段即可求得所求的線段的比例即三角函數值.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知:如圖,等腰梯形ABCD的邊BC在x軸上,點A在y軸的正方向上,A(0,6),D(精英家教網4,6),且AB=2
10

(1)求點B的坐標;
(2)求經過A、B、D三點的拋物線的解析式;
(3)點C是不是也在(2)中的拋物線上,若在請證明,若不在請說明理由;
(4)在(2)中所求的拋物線上是否存在一點P,使得S△PBC=
1
2
S梯形ABCD
?若存在,請求出該點坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,在平面直角坐標系中,△ABC為等腰三角形,直線AC解析式為y=-2x+6,精英家教網將△AOC沿直線AC折疊,點O落在平面內的點E處,直線AE交x軸于點D.
(1)求直線AD解析式;
(2)動點P以每秒1個單位的速度,從點B出發(fā)沿著x軸正方向勻速運動,點Q是射線CE上的點,且∠PAQ=∠BAC,設P運動時間為t秒,求△POQ的面積S與t之間的函數關系式;
(3)在(2)的條件下,直線CE上是否存在一點F,使以點F、A、D、P為頂點的四邊形是平行四邊形?若存在,求出t值及Q點坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知:如圖,一次函數y=
1
2
x+1的圖象與x軸交于點A,與y軸交于點B;二次函數y=
1
2
x2+bx+c的圖象與一次函數y=
1
2
x+1的圖象交于B、C兩點,與x軸交于D、E兩點且D點坐標為(1,0)
(1)求二次函數的解析式;
(2)求四邊形BDEC的面積S;
(3)在x軸上有一動點P,從O點出發(fā)以每秒1個單位的速度沿x軸向右運動,是否存在點P使得△PBC是以P為直角頂點的直角三角形?若存在,求出點P運動的時間t的值,若不存在,請說明理由.
(4)若動點P在x軸上,動點Q在射線AC上,同時從A點出發(fā),點P沿x軸正方向以每秒2個單位的速度運動,點Q以每秒a個單位的速度沿射線AC運動,是否存在以A、P、Q為頂點的三角形與△ABD相似,若存在,求a的值,若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知:如圖所示,直線l的解析式為y=
34
x-3
,并且與x軸、y軸分別交于點A、B.
(1)求A、B兩點的坐標;
(2)半徑為0.75的⊙O1,以0.4個單位/秒的速度從原點向x軸正方向運動,問在什么時刻與直線l相切;
(3)在第(2)題的條件下,在⊙O1運動的同時,與之大小相同的⊙O2從點B出發(fā),沿BA方向運動,兩圓經過的區(qū)域重疊部分是什么形狀的圖形?并求出其面積.

查看答案和解析>>

科目:初中數學 來源:2011年湖北省黃岡市黃州區(qū)路口中學中考數學模擬試卷(二)(解析版) 題型:解答題

已知:如圖,一次函數y=x+1的圖象與x軸交于點A,與y軸交于點B;二次函數y=x2+bx+c的圖象與一次函數y=x+1的圖象交于B、C兩點,與x軸交于D、E兩點且D點坐標為(1,0)
(1)求二次函數的解析式;
(2)求四邊形BDEC的面積S;
(3)在x軸上有一動點P,從O點出發(fā)以每秒1個單位的速度沿x軸向右運動,是否存在點P使得△PBC是以P為直角頂點的直角三角形?若存在,求出點P運動的時間t的值,若不存在,請說明理由.
(4)若動點P在x軸上,動點Q在射線AC上,同時從A點出發(fā),點P沿x軸正方向以每秒2個單位的速度運動,點Q以每秒a個單位的速度沿射線AC運動,是否存在以A、P、Q為頂點的三角形與△ABD相似,若存在,求a的值,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案