(2000•昆明)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象過(guò)0(0,0),A(1,-1),B(-2,14)和C(2,m)四點(diǎn).求這個(gè)函數(shù)的解析式及m的值.
【答案】分析:因?yàn)槎魏瘮?shù)y=ax2+bx+c(a≠0)的圖象過(guò)O(0,0),A(1,-1),B(-2,14);可將此三點(diǎn)的坐標(biāo)分別代入函數(shù)解析式中,便可求出a、b、c的值,進(jìn)而求出其解析式;再把C(2,m)代入拋物線(xiàn)的解析式可求出m的值.
解答:解:由題意得,
解得;
故此函數(shù)的解析式為y=2x2-3x.
把C(2,m)代入拋物線(xiàn)中,得:2×4-3×2=2,故m=2.
點(diǎn)評(píng):此題考查的是用待定系數(shù)法求二次函數(shù)的解析式,及二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,比較簡(jiǎn)單.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2000年全國(guó)中考數(shù)學(xué)試題匯編《圓》(07)(解析版) 題型:解答題

(2000•昆明)已知:如圖,點(diǎn)P是半徑為5cm的⊙O外的一點(diǎn),OP=13cm;PT切⊙O于T點(diǎn),過(guò)P點(diǎn)作⊙O的割線(xiàn)PAB(PB>PA).設(shè)PA=x,PB=y.
(1)求y關(guān)于x的函數(shù)解析式,并確定自變量x的取值范圍;
(2)這個(gè)函數(shù)有最大值嗎?若有,求出此時(shí)△PBT的面積;若沒(méi)有,請(qǐng)說(shuō)明理由;
(3)是否存在這樣的割線(xiàn)PAB,使得S△PAT=S△PBT?若存在,請(qǐng)求出PA的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2000年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(05)(解析版) 題型:解答題

(2000•昆明)已知:如圖,點(diǎn)P是半徑為5cm的⊙O外的一點(diǎn),OP=13cm;PT切⊙O于T點(diǎn),過(guò)P點(diǎn)作⊙O的割線(xiàn)PAB(PB>PA).設(shè)PA=x,PB=y.
(1)求y關(guān)于x的函數(shù)解析式,并確定自變量x的取值范圍;
(2)這個(gè)函數(shù)有最大值嗎?若有,求出此時(shí)△PBT的面積;若沒(méi)有,請(qǐng)說(shuō)明理由;
(3)是否存在這樣的割線(xiàn)PAB,使得S△PAT=S△PBT?若存在,請(qǐng)求出PA的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2000年云南省昆明市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2000•昆明)已知:如圖,點(diǎn)P是半徑為5cm的⊙O外的一點(diǎn),OP=13cm;PT切⊙O于T點(diǎn),過(guò)P點(diǎn)作⊙O的割線(xiàn)PAB(PB>PA).設(shè)PA=x,PB=y.
(1)求y關(guān)于x的函數(shù)解析式,并確定自變量x的取值范圍;
(2)這個(gè)函數(shù)有最大值嗎?若有,求出此時(shí)△PBT的面積;若沒(méi)有,請(qǐng)說(shuō)明理由;
(3)是否存在這樣的割線(xiàn)PAB,使得S△PAT=S△PBT?若存在,請(qǐng)求出PA的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2000年云南省昆明市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2000•昆明)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象過(guò)0(0,0),A(1,-1),B(-2,14)和C(2,m)四點(diǎn).求這個(gè)函數(shù)的解析式及m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案