【題目】如圖,在ABC中,A=90°,AB=AC,O是BC的中點,如果在AB和AC上分別有一個動點M、N在移動,且在移動時保持AN=BM,請你判斷OMN的形狀,并說明理由.

【答案】OMN是等腰直角三角形.理由見解析.

【解析

試題分析:連接OA.先證得OAN≌△OBM,然后根據全等三角形的對應邊相等推知OM=ON;然后由等腰直角三角形ABC的性質、等腰三角形OMN的性質推知NOM=90°,即OMN是等腰直角三角形.

試題解析:OMN是等腰直角三角形.

理由:連接OA.

ABC中,A=90°,AB=AC,O是BC的中點,

AO=BO=CO直角三角形斜邊上的中線是斜邊的一半;

B=C=45°;

OAN和OBM中,

∴△OAN≌△OBMSAS,

ON=OM;

∴∠AON=BOM;

∵∠BOM+AOM=90°

∴∠NOM=AON+AOM=90°,

∴△OMN是等腰直角三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某小區(qū)準備新建50個停車位,用以解決小區(qū)停車難的問題.已知新建1個地上停車位和1個地下停車位共需0.6萬元;新建3個地上停車位和2個地下停車位共需1.3萬元.

(1)該小區(qū)新建1個地上停車位和1個地下停車位各需多少萬元?

(2)該小區(qū)的物業(yè)部門預計投資金額超過12萬元而不超過13萬元,那么共有幾種建造停車位的方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,∠BAC=90°,P是BC中點,∠EPF=90°,給出四個結論:①∠B=∠BAP;②AE=CF;③PE=PF;④S四邊形AEPFS△ABC.其中成立的有_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】8分)如圖,ABC的兩條高AD、BE相交于點H,且AD=BD,試說明下列結論成立的理由。(1)DBH=DAC;(2)BDH≌△ADC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,已知ABCD,點E、F分別是AB、CD上的點,點P是兩平行線之間的一點,設∠AEP=α,PFC=β,在圖①中,過點E作射線EHCD于點N,作射線FI,延長PFG,使得PE、FG分別平分∠AEH、DFl,得到圖②

(1)在圖①中,過點PPMAB,當α=20°,β=50°時,∠EPM=   度,∠EPF=   度;

(2)在(1)的條件下,求圖②中∠END與∠CFI的度數(shù);

(3)在圖②中,當FIEH時,請直接寫出αβ的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為點E,連接DE,F(xiàn)為線段DE上一點,且∠AFE=∠B.

(1)求證:△ADF∽△DEC;
(2)若AB=4,AD=3 , AF=2 , 求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角三角板的直角頂點O在直線AB上,OC,OD是三角板的兩條直角邊,OE平分∠AOD.

(1)若∠COE=20°,則∠BOD=   ;若∠COE=α,則∠BOD=   (用含α的代數(shù)式表示)

(2)當三角板繞O逆時針旋轉到圖2的位置時,其它條件不變,試猜測∠COE與∠BOD之間有怎樣的數(shù)量關系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x+6與y軸交于點A,與x軸交于點B,點M是射線AB上一動點(點M不與點A、B重合),以點M為圓心,MA長為半徑的圓交y軸于另一點C,直線MC與x軸交于點D,點E是線段BD的中點,射線ME交⊙M于點F,連接OF.
(1)若MA=2,求C點的坐標;
(2)若D點的坐標為(4,0),求MC的長;
(3)當OF=MA時,直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在△ABC中,AB=AC.

(1)試用直尺和圓規(guī)在AC上找一點D,使AD=BD(不寫作法,但需保留作圖痕跡).

(2)在(1)中,連接BD,若BD=BC,求∠A的度數(shù).

查看答案和解析>>

同步練習冊答案