【題目】拋物線y=x2﹣4x+3與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)C是此拋物線的頂點(diǎn).
(1)求點(diǎn)A、B、C的坐標(biāo);
(2)點(diǎn)C在反比例函數(shù)(k≠0)的圖象上,求反比例函數(shù)的解析式.
【答案】
(1)
【解答】解:令y=0,得到x2﹣4x+3=0,即(x﹣1)(x﹣3)=0,
解得:x=1或3,
則A(1,0),B(3,0),
∵y=x2﹣4x+3=(x﹣2)2﹣1,
∴頂點(diǎn)C的坐標(biāo)為(2,﹣1);
(2)
∵點(diǎn)C(2,﹣1)在反比例函數(shù)(k≠0)的圖象上,
∴k=﹣1×2=﹣2,
∴反比例函數(shù)的解析式為;
【解析】(1)令拋物線解析式中y=0得到關(guān)于x的方程,求出方程的解得到x的值,確定出A與B坐標(biāo)即可;配方后求出C坐標(biāo)即可;
(2)將求得的點(diǎn)C的坐標(biāo)代入反比例函數(shù)的解析式即可求得k值.
【考點(diǎn)精析】本題主要考查了拋物線與坐標(biāo)軸的交點(diǎn)的相關(guān)知識(shí)點(diǎn),需要掌握一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒有交點(diǎn).才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為12的正方形ABCD中,E是邊CD的中點(diǎn),將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交BC于點(diǎn)G.則BG的長(zhǎng)為( )
A.5
B.4
C.3
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線y=﹣2x經(jīng)過(guò)點(diǎn)P(﹣2,a),點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)P′在反比例函數(shù) (k≠0)的圖象上.
(1)求a的值;
(2)直接寫出點(diǎn)P′的坐標(biāo);
(3)求反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰Rt△ABC中,∠C=90°,AC=1,過(guò)點(diǎn)C作直線l∥AB,F(xiàn)是l上的一點(diǎn),且AB=AF,則點(diǎn)F到直線BC的距離為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖形既關(guān)于點(diǎn)O中心對(duì)稱,又關(guān)于直線AC,BD對(duì)稱,AC=10,BD=6,已知點(diǎn)E,M是線段AB上的動(dòng)點(diǎn)(不與端點(diǎn)重合),點(diǎn)O到EF,MN的距離分別為h1 , h2 , △OEF與△OGH組成的圖形稱為蝶形.
(1)求蝶形面積S的最大值;
(2)當(dāng)以EH為直徑的圓與以MQ為直徑的圓重合時(shí),求h1與h2滿足的關(guān)系式,并求h1的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸相交于點(diǎn)A、B(m+2,0)與y軸相交于點(diǎn)C,點(diǎn)D在該拋物線上,坐標(biāo)為(m,c),則點(diǎn)A的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以點(diǎn)C為圓心,CB為半徑的圓交AB于點(diǎn)D,則BD的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積. 某學(xué)習(xí)小組經(jīng)過(guò)合作交流,給出了下面的解題思路,請(qǐng)你按照他們的解題思路完成解答過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上的一點(diǎn),直線MN經(jīng)過(guò)點(diǎn)C,過(guò)點(diǎn)A作直線MN的垂線,垂足為點(diǎn)D,且∠BAC=∠DAC.
(1)猜想直線MN與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若CD=6,cos∠ACD= ,求⊙O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com