【題目】如圖,等邊三角形ABC邊長是定值,點O是它的外心,過點O任意作一條直線分別交AB,BC于點D,E.將△BDE沿直線DE折疊,得到△B′DE,若B′D,B′E分別交AC于點F,G,連接OF,OG,則下列判斷錯誤的是( 。
A. △ADF≌△CGE
B. △B′FG的周長是一個定值
C. 四邊形FOEC的面積是一個定值
D. 四邊形OGB'F的面積是一個定值
【答案】D
【解析】A、根據(jù)等邊三角形ABC的外心的性質(zhì)可知:AO平分∠BAC,根據(jù)角平分線的定理和逆定理得:FO平分∠DFG,由外角的性質(zhì)可證明∠DOF=60°,同理可得∠EOG=60°,∠FOG=60°=∠DOF=∠EOG,可證明△DOF≌△GOF≌△GOE,△OAD≌△OCG,△OAF≌△OCE,可得AD=CG,AF=CE,從而得△ADF≌△CGE;
B、根據(jù)△DOF≌△GOF≌△GOE,得DF=GF=GE,所以△ADF≌△B'GF≌△CGE,可得結(jié)論;
C、根據(jù)S四邊形FOEC=S△OCF+S△OCE,依次換成面積相等的三角形,可得結(jié)論為:S△AOC=S△ABC(定值),可作判斷;
D、方法同C,將S四邊形OGB'F=S△OAC-S△OFG,根據(jù)S△OFG=FGOH,F(xiàn)G變化,故△OFG的面積變化,從而四邊形OGB'F的面積也變化,可作判斷.
A、連接OA、OC,
∵點O是等邊三角形ABC的外心,
∴AO平分∠BAC,
∴點O到AB、AC的距離相等,
由折疊得:DO平分∠BDB',
∴點O到AB、DB'的距離相等,
∴點O到DB'、AC的距離相等,
∴FO平分∠DFG,
∠DFO=∠OFG=(∠FAD+∠ADF),
由折疊得:∠BDE=∠ODF=(∠DAF+∠AFD),
∴∠OFD+∠ODF=(∠FAD+∠ADF+∠DAF+∠AFD)=120°,
∴∠DOF=60°,
同理可得∠EOG=60°,
∴∠FOG=60°=∠DOF=∠EOG,
∴△DOF≌△GOF≌△GOE,
∴OD=OG,OE=OF,
∠OGF=∠ODF=∠ODB,∠OFG=∠OEG=∠OEB,
∴△OAD≌△OCG,△OAF≌△OCE,
∴AD=CG,AF=CE,
∴△ADF≌△CGE,
故選項A正確;
B、∵△DOF≌△GOF≌△GOE,
∴DF=GF=GE,
∴△ADF≌△B'GF≌△CGE,
∴B'G=AD,
∴△B'FG的周長=FG+B'F+B'G=FG+AF+CG=AC(定值),
故選項B正確;
C、S四邊形FOEC=S△OCF+S△OCE=S△OCF+S△OAF=S△AOC=S△ABC(定值),
故選項C正確;
D、S四邊形OGB'F=S△OFG+S△B'GF=S△OFD+△ADF=S四邊形OFAD=S△OAD+S△OAF=S△OCG+S△OAF=S△OAC-S△OFG,
過O作OH⊥AC于H,
∴S△OFG=FGOH,
由于OH是定值,FG變化,故△OFG的面積變化,從而四邊形OGB'F的面積也變化,
故選項D不一定正確;
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,AD的中點,
且∠ABM=∠BAM,連接BM,MN,BN.
(1)求證:BM=MN;
(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】老師隨機抽查了本學(xué)期學(xué)生讀課外書冊數(shù)的情況,繪制成條形圖(圖1)和不完整的扇形圖(圖2),其中條形圖被墨跡遮蓋了一部分.
(1)求條形圖中被遮蓋的數(shù),并寫出冊數(shù)的中位數(shù);
(2)在所抽查的學(xué)生中隨機選一人談讀書感想,求選中讀書超過5冊的學(xué)生的概率;
(3)隨后又補查了另外幾人,得知最少的讀了6冊,將其與之前的數(shù)據(jù)合并后,發(fā)現(xiàn)冊數(shù)的中位數(shù)沒改變,則最多補查了 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形一邊長為12cm,那么它的兩條對角線的長度可以是( )
A. 8cm和14cm B. 10cm 和14cm C. 18cm和20cm D. 10cm和34cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一個工人師傅要將一個正方形ABCD的余料,修剪成四邊形ABEF的零件,其中CE=BC,F是CD的中點.
(1)若正方形的邊長為a,試用含a的代數(shù)式表示AF2+EF2的值;
(2)連結(jié)AE,△AEF是直角三角形嗎?為什么?(正方形的四條邊都相等,四個角都是直角)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為直線AB上一點,∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)請你數(shù)一數(shù),圖中有多少小于平角的角?
(2)求∠BOD的度數(shù);
(3)試判斷∠BOE和∠COE有怎樣的數(shù)量關(guān)系,說說你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AC=BC,∠ACB=90°,點D,E分別在AC,BC上,且CD=CE.
(1)如圖1,求證:∠CAE=∠CBD;
(2)如圖2,F(xiàn)是BD的中點,求證:AE⊥CF;
(3)如圖3,F(xiàn),G分別是BD,AE的中點,若AC=2,CE=1,求△CGF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,,直線,且分別交邊AB,AC于點M,N,已知直線MN將分為和梯形MBCN面積之比為5:1的兩部分,如果將線段AM繞著點A旋轉(zhuǎn),使點M落在邊BC上的點D處,那么______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,sinD=,E、F分別是AB,CD上的點,BC=5,AE=CF=2,點P是線段EF上一點,則當△BPC時直角三角形時,CP的長為____________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com