【題目】閱讀下列材料:

配方法是初中數(shù)學(xué)中經(jīng)常用到的一個(gè)重要方法,學(xué)好配方法對(duì)我們學(xué)習(xí)數(shù)學(xué)有很大的幫助,所謂配方就是

將某一個(gè)多項(xiàng)式變形為一個(gè)完全平方式,變形一定要是恒等的,例如解方程,則,∴ .方程 、.則有

.解得.方程,則有,

.解得,根據(jù)以上材料解答下列各題:

1)若.求的值;

2.求的值;

3)若表示ABC的三邊,且,試判斷ABC的形狀,并說(shuō)明理由.

【答案】(1)a=﹣2;(2)﹣1;(3)△ABC為等邊三角形.理由見(jiàn)解析.

【解析】

1)運(yùn)用完全平方公式將a2+4a+4=0變形為(a+22=0,即可求出a的值;
2)首先將x2-4x+y2+6y+13=0分成兩個(gè)完全平方式的形式,根據(jù)非負(fù)數(shù)的性質(zhì)求出xy的值,再代入(x+y2017即可解答;
3)先將已知等式利用配方法變形,再利用非負(fù)數(shù)的性質(zhì)解題.

解:(1)∵a2+4a+4=0 ,∴(a+22=0 ,a+2=0,a1=a2=2;

2)∵x24x+y2+6y+13=0 , ∴(x22+y+32=0 ,x=2,y=3,

∴(x+y2017=232017=1;

3ABC為等邊三角形.理由如下:

a2+b2+c2acabbc=0, 2a2+2b2+2c22ac2ab2bc=0

a2+b22ab+b2+c22bc+a2+c22ac=0 ,∴(ab2+bc2+ca2=0

ab=0,bc=0ca=0 ,a=b=c,∴△ABC為等邊三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為2cm的等邊ABC的邊BC在直線(xiàn)l上,兩條距離為1cm的平行直線(xiàn)ab垂直于直線(xiàn)l,直線(xiàn)ab同時(shí)向右移動(dòng)(直線(xiàn)a的起始位置在B點(diǎn)),運(yùn)動(dòng)速度為1cm/s,直到直線(xiàn)a到達(dá)C點(diǎn)時(shí)停止.ab向右移動(dòng)的過(guò)程中,記ABC夾在ab之間的部分的面積為S,求St的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖.利用一面墻(墻的長(zhǎng)度不限),用20m的籬笆圍成一個(gè)矩形場(chǎng)地ABCD.設(shè)矩形與墻垂直的一邊ABxm,矩形的面積為Sm2

1)用含x的式子表示S

2)若面積S48m2,求AB的長(zhǎng);

3)能?chē)?/span>S60m2的矩形嗎?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線(xiàn),過(guò)點(diǎn)A作AE⊥CD,AE分別與CD、CB相交于點(diǎn)H、E,AH=2CH.

(1)求sinB的值;

(2)如果CD=,求BE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一名在校大學(xué)生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷(xiāo)售一種產(chǎn)品,這種產(chǎn)品的成本價(jià)10元/件,已知銷(xiāo)售價(jià)不低于成本價(jià),且物價(jià)部門(mén)規(guī)定這種產(chǎn)品的銷(xiāo)售價(jià)不高于16元/件,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷(xiāo)售量(件與銷(xiāo)售價(jià)(元/件)之間的函數(shù)關(guān)系如圖所示.

(1)求之間的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;

(2)求每天的銷(xiāo)售利潤(rùn)W(元與銷(xiāo)售價(jià)(元/件)之間的函數(shù)關(guān)系式,并求出每件銷(xiāo)售價(jià)為多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:二次函數(shù)

1)用配方法將化成y ax-h2k的形式,并寫(xiě)出它的開(kāi)口方向、對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo);

2)畫(huà)出它的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)與反比例函數(shù)在同一直角坐標(biāo)系內(nèi)的圖像的大致位置是圖中的(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC在平面直角坐標(biāo)系中,頂點(diǎn)的坐標(biāo)分別為A(-44),B(-1,1),C(-1,4)

(1)畫(huà)出與△ABC關(guān)于y軸對(duì)稱(chēng)的△A1B1C1

(2)將△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到△A2BC2,畫(huà)兩出△A2BC2

(3)求線(xiàn)段AB在旋轉(zhuǎn)過(guò)程中掃過(guò)的圖形面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】麗水某公司將“麗水山耕”農(nóng)副產(chǎn)品運(yùn)往杭州市場(chǎng)進(jìn)行銷(xiāo)售,記汽車(chē)行駛時(shí)為t小時(shí),平均速度為v千米/小時(shí)(汽車(chē)行駛速度不超過(guò)100千米/小時(shí)).根據(jù)經(jīng)驗(yàn),v,t的一組對(duì)應(yīng)值如下表:

(1)根據(jù)表中的數(shù)據(jù),求出平均速度v(千米/小時(shí))關(guān)于行駛時(shí)間t(小時(shí))的函數(shù)表達(dá)式;

(2)汽車(chē)上午7:30從麗水出發(fā),能否在上午00之前到達(dá)杭州市場(chǎng)?請(qǐng)說(shuō)明理由;

(3)若汽車(chē)到達(dá)杭州市場(chǎng)的行駛時(shí)間t滿(mǎn)足3.5t4,求平均速度v的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案