【題目】如圖,在平面直角坐標系中,線段AB的兩個端點為A、B分別在y軸正半軸、x軸負半軸上,直線CD分別交x軸正半軸、y軸負半軸于點C、D,且AB∥CD.
(1)如圖1,若點A(0,a)和點B(b,0)的坐標滿足
ⅰ)直接寫出a、b的值,a=_____,b=_____;
ⅱ)把線段AB平移,使B點的對應點E到x軸距離為1,A點的對應點F到y軸的距離為2,且EF與兩坐標軸沒有交點,則F點的坐標為_____;
(2)若G是CD延長線上一點DP平分∠ADG,BH平分∠ABO,BH的反向延長線交DP于P(如圖2),求∠HPD的度數(shù);
(3)若∠BAO=30°,點Q在x軸(不含點B、C)上運動,AM平分∠BAQ,QN平分∠AQC,(如圖3)真接出∠BAM與∠NQC滿足的數(shù)量關系.
【答案】(1)ⅰ),﹣1;ⅱ)(﹣2,+1)或(2,+1);(2)45°;(3)當點Q在點B左側時,∠BAM+∠NQC=30°,當點Q在B、C之間時,∠NQC﹣∠BAM=30°,當點Q在點C右側時,∠BAM+∠NQC=60°.
【解析】
(1)ⅰ)利用非負數(shù)的性質即可求解;
ⅱ)有兩種情形,畫出圖象即可解決問題;
(2)設BH交y軸于K.∠ABK=∠OBK=α.利用三角形內角和定理,只要求出∠PKD,∠PDK即可解決問題;
(3)分三種情形畫出圖形分別求解即可解決問題;
解:(1)ⅰ)∵ ,
又|﹣a|≥0, ≥0,
∴a=,b=﹣1,
故答案為,﹣1.
ⅱ)如圖1中,有兩種情形,點F坐標為:(﹣2, +1)或(2, +1).
故答案為(﹣2, +1)或(2, +1).
(2)如圖2中,設BH交y軸于K.∠ABK=∠OBK=α.
∵AB∥CD,
∴∠ABO=∠OCD=2α,
∴∠ODP= (90°+2α)=45°+α.
∵∠BKO=90°﹣α,
∴∠HPD=180°﹣(90°﹣α)﹣(45°+α)=45°.
(3)如圖3﹣1中,當點Q在點B左側時,∠BAM+∠NQC=30°
如圖3﹣2中,當點Q在B、C之間時,∠NQC﹣∠BAM=30°.
如圖3﹣3中,當點Q在點C右側時,∠BAM+∠NQC=60°.
故答案為:(1)ⅰ),﹣1;ⅱ)(﹣2,+1)或(2,+1);(2)45°;(3)當點Q在點B左側時,∠BAM+∠NQC=30°,當點Q在B、C之間時,∠NQC﹣∠BAM=30°,當點Q在點C右側時,∠BAM+∠NQC=60°.
科目:初中數(shù)學 來源: 題型:
【題目】某中學改革學生的學習模式,變“老師要學生學習”為“學生自主學習”,培養(yǎng)了學生自主學習的能力.小華與小明同學就“你最喜歡哪種學習方式”隨機調查了他們周圍的一些同學,根據(jù)收集到的數(shù)據(jù)繪制了以下兩個不完整的統(tǒng)計圖(如圖).
請根據(jù)上面兩個不完整的統(tǒng)計圖回答以下4個問題:
(1)這次抽樣調查中,共調查了_____名學生.
(2)補全條形統(tǒng)計圖中的缺項.
(3)在扇形統(tǒng)計圖中,選擇教師傳授的占_____%,選擇小組合作學習的占_____%.
(4)根據(jù)調查結果,估算該校1800名學生中大約有_____人選擇小組合作學習模式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,,,,分別平分的外角,內角,外角.以下結論:①;②;③;④平分;⑤.其中正確的結論有______________.(把正確結論序號填寫在橫線上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,折疊矩形紙片ABCD的一邊AD,使點D落在BC邊上的點F處,若AB=8,BC=10,則△CEF的周長為( )
A.12
B.16
C.18
D.24
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:四邊形ABCD中,AB=2,CD=3,M、N分別是AD,BC的中點,則線段MN的取值范圍是( )
A. 1<MN<5 B. 1<MN≤5 C. <MN< D. <MN≤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】給出如下四個命題,其中原命題與逆命題均為真命題的個數(shù)是( )
①若,,則;
②若,則;
③角的平分線上的點到角的兩邊的距離相等;
④線段的垂直平分線上的點到線段兩端點距離相等.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將三角形ABC向左平移至點B與原點重合,得三角形A′OC′.
(1)直接寫出三角形ABC的三個頂點的坐標A B C ;
(2)畫出三角形A′OC′;
(3)求三角形ABC的面積;
(4)直接與出A′C′與y軸交點的坐標 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校學生會決定從三名學生會干事中選拔一名干事,對甲、乙、丙三名候選人進行了筆試和面試,三人的測試成績如下表所示:
測試項目 | 測試成績/分 | ||
甲 | 乙 | 丙 | |
筆試 | 75 | 80 | 90 |
面試 | 93 | 70 | 68 |
根據(jù)錄用程序,學校組織200名學生采用投票推薦的方式,對三人進行民主測評,三人得票率(沒有棄權,每位同學只能推薦1人)如扇形統(tǒng)計圖所示,每得一票記1分.
(1)扇形統(tǒng)計圖中= , 分別計算三人民主評議的得分;
(2)根據(jù)實際需要,學校將筆試、面試、民主評議三項得分按4:3:3的比例確定個人成績,得分最高者將被選中,通過計算說明三人中誰被選中?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com