【題目】如圖,直線與拋物線交于、兩點(diǎn)(在的左側(cè)),與軸交于點(diǎn),拋物線的頂點(diǎn)為,拋物線的對稱軸與直線交于點(diǎn).
(1)當(dāng)四邊形是菱形時(shí),求點(diǎn)的坐標(biāo);
(2)若點(diǎn)為直線上一動點(diǎn),求的面積;
(3)作點(diǎn)關(guān)于直線的對稱點(diǎn),以點(diǎn)為圓心,為半徑作,點(diǎn)是上一動點(diǎn),求的最小值.
【答案】(1);(2)3;(3)
【解析】
(1)根據(jù)菱形的性質(zhì)可得OD=OC=m,求出m=,則D點(diǎn)坐標(biāo)可求出;
(2)聯(lián)立直線與拋物線求出交點(diǎn)A、B的坐標(biāo),然后求出AB的長,再根據(jù)AB∥OD求出兩平行線間的距離,最后根據(jù)三角形的面積公式列式計(jì)算即可;
(3)根據(jù)A、B的坐標(biāo)求出AM、BM的長,再求出點(diǎn)M的坐標(biāo),從而得到⊙M的半徑為2,取MB的中點(diǎn)N,連接QB、QN、QB′,然后利用兩邊對應(yīng)成比例夾角相等兩三角形相似求出△MNQ和△MQB相似,再根據(jù)相似三角形對應(yīng)邊成比例求出QN=QB,然后根據(jù)三角形任意兩邊之和大于第三邊判斷出Q、N、B′三點(diǎn)共線時(shí)QB′+QB最小,然后根據(jù)勾股定理列式計(jì)算即可.
(1) ,, 菱形
(2)①與拋物線交于兩點(diǎn),
∴聯(lián)立,,
解得,
∵點(diǎn)在點(diǎn)的左側(cè)
,
∴直線的解析式為,直線的解析式為
,兩直線之間距離
(3) ,
,
由點(diǎn)坐標(biāo),點(diǎn)坐標(biāo)可知以為半徑的圓的半徑為
取的中點(diǎn),連接,
則,
,,
,
,
由三角形三邊關(guān)系,當(dāng)三點(diǎn)共線時(shí)最小,
∵直線的解析式為,
∴直線與對稱軸夾角為45°,
∵點(diǎn)關(guān)于對稱軸對稱,
,
由勾股定理得,最小值
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形內(nèi)接于,,對角線為的直徑,與交于點(diǎn).點(diǎn)為延長線上,且.
(1)證明:;
(2)若,,求的長;
(3)若交于點(diǎn),連接.證明:為的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D是BC邊上一點(diǎn),E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交BE的延長線于F,且AF=CD,連接CF.
(1)求證:△AEF≌△DEB;
(2)若AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作圓O,分別交BC于點(diǎn)D,交CA的延長線于點(diǎn)E,過點(diǎn)D作DH⊥AC于點(diǎn)H,連接DE交線段OA于點(diǎn)F.
(1)求證:DH是圓O的切線;
(2)若A為EH的中點(diǎn),求的值;
(3)若EA=EF=1,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】西寧市教育局自實(shí)施新課程改革后,學(xué)生的自主學(xué)習(xí)、合作交流能力有很大提高.張老師為了了解所教班級學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對本班部分學(xué)生進(jìn)行了為期半個(gè)月的跟蹤調(diào)查,將調(diào)查結(jié)果分成四類,A:特別好;B:好;C:一般;D:較差;并將調(diào)查結(jié)果繪制成以下不完整的統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)本次調(diào)查中,張老師一共調(diào)查了 名同學(xué);
(2)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)為了共同進(jìn)步,張老師想從被調(diào)查的A類和D類學(xué)生分別選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請用列表法或畫樹形圖的方法列出所有等可能的結(jié)果,并求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定:[x]表示不大于x 的最整數(shù),(x) 表示不小于x的最小整數(shù),[x) 表示最接近x的整數(shù)(x≠n+0.5,n為整數(shù)),例如:[2.3]=2,(2.3)=3,[2.3)=2,則下列說法正確的是__________(寫出所有正確說法).
①當(dāng)x=1.7時(shí),[x]+(x)+[x)=6;
②當(dāng)x=-2.1時(shí),[x]+(x)+[x)=-7;
③方程4[x]+3(x)+[x)=11的解為1<x<1.5;
④當(dāng)-1<x<1時(shí), 函數(shù)y=[x]+(x)+x 的圖像y=4x 的圖像有兩個(gè)交點(diǎn).
【答案】②③
【解析】分析:(1)根據(jù)題目中給的計(jì)算方法代入計(jì)算后判定即可;(2)根據(jù)題目中給的計(jì)算方法代入計(jì)算后判定即可;(3)根據(jù)題目中給的計(jì)算方法代入計(jì)算后判定即可;(4)結(jié)合x的取值范圍,分類討論,利用題目中給出的方法計(jì)算后判定即可.
詳解:
①當(dāng)x=1.7時(shí),
[x]+(x)+[x)
=[1.7]+(1.7)+[1.7)=1+2+2=5,故①錯誤;
②當(dāng)x=﹣2.1時(shí),
[x]+(x)+[x)
=[﹣2.1]+(﹣2.1)+[﹣2.1)
=(﹣3)+(﹣2)+(﹣2)=﹣7,故②正確;
③當(dāng)1<x<1.5時(shí),
4[x]+3(x)+[x)
=4×1+3×2+1
=4+6+1
=11,故③正確;
④∵﹣1<x<1時(shí),
∴當(dāng)﹣1<x<﹣0.5時(shí),y=[x]+(x)+x=﹣1+0+x=x﹣1,
當(dāng)﹣0.5<x<0時(shí),y=[x]+(x)+x=﹣1+0+x=x﹣1,
當(dāng)x=0時(shí),y=[x]+(x)+x=0+0+0=0,
當(dāng)0<x<0.5時(shí),y=[x]+(x)+x=0+1+x=x+1,
當(dāng)0.5<x<1時(shí),y=[x]+(x)+x=0+1+x=x+1,
∵y=4x,則x﹣1=4x時(shí),得x=;x+1=4x時(shí),得x=;當(dāng)x=0時(shí),y=4x=0,
∴當(dāng)﹣1<x<1時(shí),函數(shù)y=[x]+(x)+x的圖象與正比例函數(shù)y=4x的圖象有三個(gè)交點(diǎn),故④錯誤,
故答案為:②③.
點(diǎn)睛:本題是閱讀理解題,前三問比較容易判定,根據(jù)題目所給的方法判定即可;第四問較難,結(jié)合x的取值范圍分情況討論即可.
【題型】填空題
【結(jié)束】
19
【題目】先化簡再求值: ,其中, .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線交軸于點(diǎn),交軸于點(diǎn),與反比例函數(shù)的圖象交于,.
(1)求的值;
(2)根據(jù)圖象直接寫出時(shí),的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+b與x軸、y軸分別交于點(diǎn)A,B,且OA,OB的長(OA>OB)是方程x2-10x+24=0的兩個(gè)根,P(m,n)是第一象限內(nèi)直線y=kx+b上的一個(gè)動點(diǎn)(點(diǎn)P不與點(diǎn)A,B重合).
(1)求直線AB的解析式.
(2)C是x軸上一點(diǎn),且OC=2,求△ACP的面積S與m之間的函數(shù)關(guān)系式;
(3)在x軸上是否有在點(diǎn)Q,使以A,B,Q為頂點(diǎn)的三角形是等腰三角形?若存在,請直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是邊BC的中點(diǎn),DE⊥AC,垂足為點(diǎn) E.
(1)求證:DECD=ADCE;
(2)設(shè)F為DE的中點(diǎn),連接AF、BE,求證:AFBC=ADBE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com