如圖,直線l與坐標軸分別交于A、B兩點,∠BAO=45°,點A坐標為(8,0).動點P從點O出發(fā),沿折線段OBA運動,到點A停止;同時動點Q也從點O出發(fā),沿線段OA運動,到點A停止;它們的運動速度均為每秒1個單位長度.

(1)求直線AB的函數(shù)關系式;
(2)若點A、B、O與平面內點E組成的圖形是平行四邊形,請直接寫出點E的坐標;
(3)在運動過程中,當P、Q的距離為2時,求點P的坐標.

(1)y=-x+8;(2)(2)(8,8)、 (-8,8)、(8,-8);(3)(0,)、 (8-,2).

解析試題分析:(1)根據(jù)OA和OB的長度可求出A、B兩點的坐標;將A、B兩點的坐標代入直線方程式中即可求出直線解析式;
(2)根據(jù)題意知:點E的位置有三處.
(3)設點P運動t秒后PQ=2.由勾股定理可求出t的值,從而確定點P的坐標.
試題解析:(1)根據(jù)題意知:OB=8
∴A點坐標為(0,8)
設直線AB的解析式為y=kx+b
把A、B兩點坐標代入得:
 解得:
所以:直線AB的解析式為y=-x+8;
(2)(2)(8,8)、 (-8,8)、(8,-8);
(3)(0,)、 (8-,2).
考點:一次函數(shù)綜合題

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中,一次函數(shù)(a為常數(shù))的圖象與y軸相交于點A,與函數(shù)的圖象相交于點B
(1)求點B的坐標及一次函數(shù)的解析式;
(2)若點P在y軸上,且△PAB為直角三角形,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

一天,某漁船離開港口前往黃巖島海域捕魚,8小時后返航,此時一艘漁政船從該港口出發(fā)前往黃巖島巡查(假設漁政船與漁船沿同一航線航行)。下圖是漁政船及漁船到港口的距離S和漁船離開港口的時間t之間的函數(shù)圖象.
(1)寫出漁船離港口的距離S和它離開港口的時間t的函數(shù)關系式;
(2)在漁船返航途中,什么時間范圍內兩船間距離不超過30海里?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

,是任意兩個不等實數(shù),我們規(guī)定:滿足不等式的實數(shù)的所有取值的全體叫做閉區(qū)間,表示為. 對于一個函數(shù),如果它的自變量與函數(shù)值滿足:當m≤≤n時,有m≤≤n,我們就稱此函數(shù)是閉區(qū)間上的“閉函數(shù)”.
(1)反比例函數(shù)是閉區(qū)間上的“閉函數(shù)”嗎?請判斷并說明理由;
(2)若一次函數(shù)是閉區(qū)間上的“閉函數(shù)”,求此函數(shù)的表達式;
(3)若二次函數(shù)是閉區(qū)間上的“閉函數(shù)”,直接寫出實數(shù) 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知直線與坐標軸相交于A、B兩點,與雙曲線交于點C.A、D兩點關于y軸對稱若四邊形OBCD的面積為6,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,一次函數(shù)y=kx+3的圖象分別交x軸、y軸于點C、點D,與反比例函數(shù)的圖象在第四象限相交于點P,并且PA⊥x軸于點A,PB⊥y軸于點B,已知B(0,-6)且SDBP=27.
(1)求上述一次函數(shù)與反比例函數(shù)的表達式;
(2)設點Q是一次函數(shù)y=kx+3圖象上的一點,且滿足△DOQ的面積是△COD面積的2倍,直接寫出點Q的坐標.
(3)若反比例函數(shù)的圖象與△ABP總有公共點,直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,二次函數(shù)y=(x-2)2+m的圖象與y軸交于點C,點B是點C關于該二次函數(shù)圖象的對稱軸對稱的點.已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上點A(1,0)及點B.

(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫出滿足kx+b≥(x-2)2+m的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,直線y=-x+6分別與x軸、y軸交于A、B兩點;直線y=x與AB交于點C,與過點A且平行于y軸的直線交于點D.點E從點A出發(fā),以每秒1個單位的速度沿軸向左運動.過點E作x軸的垂線,分別交直線AB、OD于P、Q兩點,以PQ為邊向右作正方形PQMN,設正方形PQMN與△ACD重疊部分(陰影部分)的面積為S(平方單位),點E的運動時間為t(秒).

(1)求點C的坐標;
(2)當0<t<5時,求S與t之間的函數(shù)關系式,并求S的最大值;
(3)當t>0時,直接寫出點(4,)在正方形PQMN內部時t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

一次函數(shù)的圖象與反比例函數(shù)的圖象交于A(1,4)、B(﹣2,m)兩點,
(1)求一次函數(shù)和反比例函數(shù)的關系式;
(2)畫出草圖,并根據(jù)草圖直接寫出不等式的解集.

查看答案和解析>>

同步練習冊答案