【題目】某校計劃修建一座既是中心對稱圖形又是軸對稱圖形的花壇,從學(xué)生中征集到設(shè)計方案有等腰三角形,正三角形,等腰梯形和菱形四種圖形,你認(rèn)為符合條件的是(
A.等腰三角形
B.正三角形
C.等腰梯形
D.菱形

【答案】D
【解析】解:等腰三角形、等邊三角形、等腰梯形都只是軸對稱圖形; 菱形既是軸對稱圖形,也是中心對稱圖形.
故選:D.
根據(jù)軸對稱圖形與中心對稱圖形的概念和等腰三角形、等邊三角形、等腰梯形、菱形的性質(zhì)求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若(9+x2)(x+3)·M=81-x4,則M=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=AD,∠BAD=60°,∠BCD=120°,延長BC,使CE=CD,連接DE,求證:BC+DC=AC.
思路點撥:

(1)由已知條件AB=AD,∠BAD=60°,可知:△ABD是三角形;
(2)同理由已知條件∠BCD=120°得到∠DCE= , 且CE=CD,可知;
(3)要證BC+DC=AC,可將問題轉(zhuǎn)化為兩條線段相等,即=;
請你先完成思路點撥,再進(jìn)行證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某海域有A、B、C三艘船正在捕魚作業(yè),C船突然出現(xiàn)故障,向A、B兩船發(fā)出緊急求救信號,此時B船位于A船的北偏西72°方向,距A船24海里的海域,C船位于A船的北偏東33°方向,同時又位于B船的北偏東78°方向.

(1)求ABC的度數(shù);

(2)A船以每小時30海里的速度前去救援,問多長時間能到出事地點.(結(jié)果精確到0.01小時).

(參考數(shù)據(jù):1.414,1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面內(nèi),不重合的兩條直線的位置關(guān)系有(  )

A. 平行和垂直 B. 相交和垂直

C. 平行和相交 D. 平行、垂直和相交

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,D是BC邊上的一點,連接AD,取AD的中點E,過點A作BC的平行線與CE的延長線交于點F,連接DF.

(1)求證:AF=DC;
(2)請問:AD與CF滿足什么條件時,四邊形AFDC是矩形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=45°,AB=4cm,將△ABC繞點B按逆時針方向旋轉(zhuǎn)45°后得到△A′BC′,則陰影部分的面積為 ___________cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小亮在學(xué)習(xí)探索三角形全等時,碰到如下一題:如圖1,若AC=AD,BC=BD,則△ACB與△ADB有怎樣的關(guān)系?

(1)請你幫他們解答,并說明理由.
(2)細(xì)心的小明在解答的過程中,發(fā)現(xiàn)如果在AB上任取一點E,連接CE、DE,則有CE=DE,你知道為什么嗎?(如圖2)
(3)小亮在小明說出理由后,提出如果在AB的延長線上任取一點P,也有第2題類似的結(jié)論.請你幫他畫出圖形,并寫出結(jié)論,不要求說明理由.(如圖3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】33°1516"×5

查看答案和解析>>

同步練習(xí)冊答案