【題目】如圖,一段拋物線:y=﹣x(x﹣3)(0≤x≤3),記為C1,它與x軸交于點O,A1;
將C1繞點A1旋轉180°得C2,交x軸于點A2;
將C2繞點A2旋轉180°得C3,交x軸于點A3;
…
如此進行下去,直至得C13.若P(37,m)在第13段拋物線C13上,則m=_____.
科目:初中數學 來源: 題型:
【題目】如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠DCP的平分線上一點.若∠AMN=90°,求證:AM=MN.
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連ME.
正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN—∠AMB
=180°—∠B—∠AMB
=∠MAB=∠MAE.
(下面請你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點,則當∠AMN=60°時,結論AM=MN是否還成立?請說明理由.
(3)若將(1)中的“正方形ABCD”改為“正邊形ABCD…X”,請你作出猜想:當∠AMN=°時,結論AM=MN仍然成立.(直接寫出答案,不需要證明)
圖1 圖2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果反比例函數的圖象經過點(3,﹣5),那么這個反比例函數的圖象一定經過點( 。
A. (3,5) B. (﹣3,5) C. (﹣3,﹣5) D. (0,﹣5)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為預防甲型H1N1流感,某校對教室噴灑藥物進行消毒.已知噴灑藥物時每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成正比,藥物噴灑完后,y與x成反比例(如圖所示).現測得10分鐘噴灑完后,空氣中每立方米的含藥量為8毫克.
(1)求噴灑藥物時和噴灑完后,y關于x的函數關系式;
(2)若空氣中每立方米的含藥量低于2毫克學生方可進教室,問消毒開始后至少要經過多少分鐘,學生才能回到教室?
(3)如果空氣中每立方米的含藥量不低于4毫克,且持續(xù)時間不低于10分鐘時,才能殺滅流感病毒,那么此次消毒是否有效?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(滿分6分)如圖,在平面直角坐標系中,已知點B(4,2),BA⊥軸于A.
(1)畫出將△OAB繞原點旋轉180°后所得的△OA1B1 ,并寫出點B1 的坐標;
(2)將△OAB平移得到△O2A2B2,點A的對應點是A2(2,-4),點B的對應點B2
在坐標系中畫出△O2A2B2 ;并寫出B2的坐標;
(3)△OA1B1與△O2A2B2成中心對稱嗎?若是, 請直接寫出對稱中心點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)發(fā)現:如圖1,點A為線段BC外一動點,且BC=a,AB=b.
①填空:當點A位于 時,線段AC的長取得最大值,且最大值為 (用含a,b的式子表示)
(2)應用:點A為線段BC外一動點,且BC=3,AB=1,如圖2所示,分別以AB、AC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE.
①請找出圖中與BE相等的線段,并說明理由;
②直接寫出線段BE長的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com