【題目】如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補.
(1)試判斷直線AB與CD的位置關(guān)系,并說明理由;
(2)如圖2,∠AEF與∠EFC的角平分線交于點P,PF∥GH,求證:GH⊥EG;
(3)如圖3,在(2)的條件下,連接PH,K是GH上一點使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請求出其值;若變化,說明理由.
【答案】
(1)解:∵∠1+∠AEF=180°,
∠1+∠2=180°,
∴∠AEF=∠2,
∴AB∥CD.
(2)解:∵AB∥CD,
∴∠AEF+∠EFC=180°;
∵∠AEF與∠EFC的角平分線交于點P,
∴∠PEF+∠PFE=90°,即PF⊥GE;
∵PF∥GH,
∴GH⊥EG
(3)解:∵PF∥GH,
∴∠FPH=∠PHK,而∠PHK=∠HPK,
∴∠FPH=∠KPH(設(shè)為α);
∵PQ平分∠EPK,
∴∠KPQ= =45°+α,
∴∠HPQ=45°+α﹣α=45°,
即∠HPQ的大小不會發(fā)生變化
【解析】掌握對頂角的性質(zhì)以及平行線的判定定理進行解決實際問題.
【考點精析】本題主要考查了平行線的判定與性質(zhì)的相關(guān)知識點,需要掌握由角的相等或互補(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì)才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在小島上有一觀測站A,燈塔B在觀測站A北偏東45°的方向.燈塔C在燈塔B的正西方向,且相距10海里,燈塔C與觀測站A相距海里,請你測算燈塔C處在觀測站A的什么方向?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是我市某一天在不同時段測得的氣溫情況
0:00 | 4:00 | 8:00 | 12:00 | 16:00 | 20:00 |
25℃ | 27℃ | 29℃ | 32℃ | 34℃ | 30℃ |
則這一天氣溫的極差是℃.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的頂點A,B,D的坐標(biāo)分別是(0,0)、(5,0)、(2,3),則頂點C的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用一個平面截去正方體的一個角,則截面不可能是( )
A. 等腰直角三角形 B. 等腰三角形
C. 銳角三角形 D. 等邊三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰三角形ABC中,AB=AC=4,BC=7.如圖2,在底邊BC上取一點D,連結(jié)AD,使得∠DAC=∠ACD.如圖3,將△ACD沿著AD所在直線折疊,使得點C落在點E處,連結(jié)BE,得到四邊形ABED.則BE的長是( )
A.4 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形AOCB的兩邊OA、OC分別在x軸和y軸上,且OA=2,OC=1.在第二象限內(nèi),將矩形AOCB以原點O為位似中心放大為原來的倍,得到矩形A1OC1B1,再將矩形A1OC1B1以原點O為位似中心放大倍,得到矩形A2OC2B2…,以此類推,得到的矩形AnOCnBn的對角線交點的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,某溫室屋頂結(jié)構(gòu)外框為△ABC,立柱AD垂直平分橫梁BC,∠B=30°,斜梁AC=4m,為增大向陽面的面積,將立柱AD增高并改變位置后變?yōu)镋F,使屋頂結(jié)構(gòu)外框由△ABC變?yōu)椤鱁BC(點E在BA的延長線上)如圖2所示,且立柱EF⊥BC,若EF=3m,則斜梁增加部分AE的長為m.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com