【題目】如圖,在⊙O中,直徑AB=2,CA切⊙O于A,BC交⊙O于D,若∠C=45°,則
(1)BD的長是 ;
(2)求陰影部分的面積.
【答案】(1)(2)1
【解析】解:(1)。
(2)連接OD,AD,
∵O是AB的中點(diǎn),D是BC的中點(diǎn),
∴OD是△ABC的中位線。∴OD=1。
∴OD⊥AB,∴。
∴與弦BD組成的弓形的面積等于與弦AD組成的弓形的面積,
∴ =ABAC﹣ABOD=×2×2﹣×2×1=2﹣1=1。
(1)連接AD,
∵AC是⊙O的切線,∴AB⊥AC。
∵∠C=45°,∴AB=AC=2。∴。
∵AB是⊙O的直徑,∴∠ADB=90°。∴D是BC的中點(diǎn)。∴BD=BC=。
(2)連接OD,∵O是AB的中點(diǎn),D是BC的中點(diǎn),∴OD是△ABC的中位線,所以O(shè)D⊥AB,故,所以與弦BD組成的弓形的面積等于與弦AD組成的弓形的面積,∴。從而可得出結(jié)論。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某養(yǎng)殖戶每年的養(yǎng)殖成本包括固定成本和可變成本,其中固定成本每年均為4萬元,可變成本逐年增長,已知該養(yǎng)殖戶第一年的可變成本為2.6萬元,設(shè)可變成本平均每年增長的百分率為
(1)用含x的代數(shù)式表示低3年的可變成本為 萬元;
(2)如果該養(yǎng)殖戶第3年的養(yǎng)殖成本為7.146萬元,求可變成本平均每年的增長百分率x.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,AM∥CN,求證:
①∠MAB+∠ABC+∠BCN=360°;
②∠MAE+∠AEF+∠EFC+∠FCN=540°;
(2)如圖2,若平行線AM與CN間有n個點(diǎn),根據(jù)(1)中的結(jié)論寫出你的猜想并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小燁在探究數(shù)軸上兩點(diǎn)間距離時發(fā)現(xiàn):若兩點(diǎn)在軸上或與軸平行,兩點(diǎn)的橫坐標(biāo)分別為,則兩點(diǎn)間距離為;若兩點(diǎn)在軸上或與軸平行,兩點(diǎn)的縱坐標(biāo)分別為,則兩點(diǎn)間距離為.據(jù)此,小燁猜想:對于平面內(nèi)任意兩點(diǎn),兩點(diǎn)間的距離為.
(1)請你利用下圖,試證明:;
(2)若,試在軸上求一點(diǎn),使的距離最短,并求出的最小值和點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長沙市馬王堆蔬菜批發(fā)市場某批發(fā)商原計劃以每千克10元的單價對外批發(fā)銷售某種蔬菜為了加快銷售,該批發(fā)商對價格進(jìn)行兩次下調(diào)后,售價降為每千克元.
求平均每次下調(diào)的百分率;
某大型超市準(zhǔn)備到該批發(fā)商處購買2噸該蔬菜,因數(shù)量較多,該批發(fā)商決定再給予兩種優(yōu)惠方案以供選擇方案一:打八折銷售;方案二:不打折,每噸優(yōu)惠現(xiàn)金1000元試問超市采購員選擇哪種方案更優(yōu)惠?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工程隊用甲、乙兩臺隧道挖掘機(jī)從兩個方向挖掘同一條隧道,因?yàn)榈刭|(zhì)條件不同,甲、乙的挖掘速度不同,已知甲、乙同時挖掘天,可以挖米,若甲挖天,乙挖天可以挖掘米.
(1)請問甲、乙挖掘機(jī)每天可以挖掘多少米?
(2)若乙挖掘機(jī)比甲挖掘每小時多挖掘米,甲、乙每天挖掘的時間相同,求甲每小時挖掘多少米?
(3)若隧道的總長為米,甲、乙挖掘機(jī)工作天后,因?yàn)榧淄诰驒C(jī)進(jìn)行設(shè)備更新,乙挖掘機(jī)設(shè)備老化,甲比原來每天多挖米,同時乙比原來少挖米.最終,甲、乙兩臺挖掘機(jī)在相同時間里各完成隧道總長的一半,請用含,的代數(shù)式表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在8×8的正方形網(wǎng)格中,每個小正方形的邊長都為1,網(wǎng)格中有一個格點(diǎn)△ABC(即三角形的頂點(diǎn)都在格點(diǎn)上).
(1)在圖中作出△ABC關(guān)于直線l對稱的△A1B1C1;(要求:A與A1,B與B1,C與C1相對應(yīng))
(2)是 三角形;
(3)若有一格點(diǎn)P到點(diǎn)A、B的距離相等(PA=PB),則網(wǎng)格中滿足條件的點(diǎn)P共有 個;
(4)在直線上找一點(diǎn)Q,使QB+QC的值最小。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m,CE⊥直線m,垂足分別為點(diǎn)D、E.猜測DE、BD、CE三條線段之間的數(shù)量關(guān)系(直接寫出結(jié)果即可).
(2)如圖2,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問第(1)題中DE、BD、CE之間的關(guān)系是否仍然成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應(yīng)用:如圖3,D、E是D、A、E三點(diǎn)所在直線m上的兩動點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷線段DF、EF的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,動點(diǎn)P從點(diǎn)B出發(fā)沿射線BC以1cm/s的速度移動,設(shè)運(yùn)動的時間為t秒.
(1)求BC邊的長;
(2)當(dāng)△ABP為直角三角形時,求t的值;
(3)當(dāng)△ABP為等腰三角形時,求t的值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com