【題目】甲布袋中有三個(gè)紅球,分別標(biāo)有數(shù)字1,2,3;乙布袋中有三個(gè)白球,分別標(biāo)有數(shù)字2,3,4.這些球除顏色和數(shù)字外完全相同.小亮從甲袋中隨機(jī)摸出一個(gè)紅球,小剛從乙袋中隨機(jī)摸出一個(gè)白球.
(1)用畫樹狀圖(樹形圖)或列表的方法,求摸出的兩個(gè)球上的數(shù)字之和為6的概率;
(2)小亮和小剛做游戲,規(guī)則是:若摸出的兩個(gè)球上的數(shù)字之和為奇數(shù),小亮勝;否則,小剛勝.你認(rèn)為這個(gè)游戲公平嗎?為什么?
【答案】(1)見解析;.(2)這個(gè)游戲不公平,見解析
【解析】
試題分析:游戲是否公平,關(guān)鍵要看游戲雙方獲勝的機(jī)會(huì)是否相等,即判斷雙方取勝的概率是否相等,或轉(zhuǎn)化為在總情況明確的情況下,判斷雙方取勝所包含的情況數(shù)目是否相等.
解:
(1)解法一:樹狀圖
(3分)
∴P(兩個(gè)球上的數(shù)字之和為6)=.(2分)
解法二:列表
2 | 3 | 4 | |
1 | (1,2) | (1,3) | (1,4) |
2 | (2,2) | (2,3) | (2,4) |
3 | (3,2) | (3,3) | (3,4) |
∴P(兩個(gè)球上的數(shù)字之和為6)=.
(2)不公平.(1分)
∵P(小亮勝)=,P(小剛勝)=.(2分)
∴P(小亮勝)≠P(小剛勝).
∴這個(gè)游戲不公平.(2分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤被3等分,指針落在每個(gè)扇形內(nèi)的機(jī)會(huì)均等.
(1)現(xiàn)隨機(jī)轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,停止后,指針指向1的概率為 ;
(2)小明和小華利用這個(gè)轉(zhuǎn)盤做游戲,若采用下列游戲規(guī)則,你認(rèn)為對(duì)雙方公平嗎?請(qǐng)用列表或畫樹狀圖的方法說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A. 兩個(gè)等邊三角形一定全等 B. 形狀相同的兩個(gè)三角形全等
C. 面積相等的兩個(gè)三角形全等 D. 全等三角形的面積一定相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的面積為24,點(diǎn)D在線段AC上,點(diǎn)F在線段BC的延長(zhǎng)線上,且BF=4CF,四邊形DCFE是平行四邊形,則圖中陰影部分的面積為( )
A.3 B.4 C.6 D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E,F(xiàn)分別為邊AB,CD的中點(diǎn),連接DE、BF、BD.
(1)求證:△ADE≌△CBF.
(2)若AD⊥BD,則四邊形BFDE是什么特殊四邊形?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個(gè),小穎做摸球?qū)嶒?yàn),她將盒子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回盒子中,不斷重復(fù)上述過程,下表是實(shí)驗(yàn)中的一組統(tǒng)計(jì)數(shù)據(jù):
(1)請(qǐng)估計(jì):當(dāng)n很大時(shí),摸到白球的頻率將會(huì)接近 ;(精確到0.1)
(2)假如你摸一次,你摸到白球的概率P(白球)= ;
(3)試估算盒子里黑、白兩種顏色的球各有多少只?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對(duì)稱軸為x=1的拋物線經(jīng)過A(﹣1,0),B(4,5)兩點(diǎn).
(1)求拋物線的解析式;
(2)P為直線AB上的動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線交拋物線于點(diǎn)Q.
①當(dāng)PQ=6時(shí),求點(diǎn)P的坐標(biāo);
②是否存在點(diǎn)P,使以A、P、Q為頂點(diǎn)的三角形為等腰三角形?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)和一次函數(shù)y=2x﹣1,其中一次函數(shù)的圖象經(jīng)過(a,b),(a+1,b+k)兩點(diǎn).
(1)求反比例函數(shù)的解析式;
(2)如圖,已知點(diǎn)A在第一象限,且同時(shí)在上述兩個(gè)函數(shù)的圖象上,求點(diǎn)A的坐標(biāo);
(3)利用(2)的結(jié)果,請(qǐng)問:在x軸上是否存在點(diǎn)P,使△AOP為等腰三角形?若存在,把符合條件的P點(diǎn)坐標(biāo)都求出來;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com