【題目】閱讀下面材料:材料1:如果一個多項式中的字母按照任何次序輪換后,原多項式不變,那么稱該多項式是輪換多項式,簡稱輪換式.例如:多項式,將字母換字母,字母換字母,得到多項式,而,所以多項式是輪換式.我們把含有兩個字母的輪換式稱為二元輪換式,其中含字母的二元輪換式的基本輪換式是,像,等二元輪換式都可以用表示,例如:.

材料2:因為,所以,對于二次項系數(shù)為1的二次三項式的因式分解,就是把常數(shù)項分解成兩個數(shù)的積,且使這兩數(shù)的和等于,即如果有兩數(shù)滿足,,則有.如分解因式:因為,,所以.

請根據(jù)以上材料解決下列問題:

1)式子①;②;③,④中,屬于輪換式的是 (填序號);

2)因式分解: ; ;

3)若(其中),且,求的值并把式子因式分解.

【答案】1)②④;(2;;(3;

【解析】

1)根據(jù)題中給出的例題計算即可得出屬于輪換式的式子;

(2)利用十字相乘的法則與提取公因式進(jìn)行因式分解即可;

(3)由得出,即有,即可求出,然后根據(jù)求出m的值,代入進(jìn)行因式分解即可.

解:(1)①將字母換字母,字母換字母,得到多項式,而,因此不是輪換式,

②字母換字母,字母換字母,得到多項式,而=,故是輪換式,

③字母換字母,字母換字母,得到多項式,而,故不是輪換式,

④字母換字母,字母換字母,得到多項式,而=,故是輪換式;

2,

=;

3)由可知

=100

,即,

此時,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市計劃建造一座如圖設(shè)計的塔形建筑物作為市標(biāo),最底層的圓柱形的底面半徑為,高為米,再上去的圓柱形底面半徑以的比例縮小,而樓層的高度也以同樣的比例縮小,那么要使得建筑物的表面積不超過平方米(表面積不包括最底層的底面積),樓層最高為________層.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小云玩抽卡片和旋轉(zhuǎn)盤游戲,有兩張正面分別標(biāo)有數(shù)字,的不透明卡片,背面完全相同;轉(zhuǎn)盤被平均分成個相等的扇形,并分別標(biāo)有數(shù)字,(如圖所示),小云把卡片背面朝上洗勻后從中隨機(jī)抽出一張,記下卡片上的數(shù)字;然后轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后,記下指針?biāo)趨^(qū)域的數(shù)字(若指針在分格線上,則重轉(zhuǎn)一次,直到指針指向某一區(qū)域為止).

請用列表或樹狀圖的方法(只選其中一種),表示出兩次所得數(shù)字可能出現(xiàn)的所有結(jié)果;

求出兩個數(shù)字之積為負(fù)數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)與探究:

在等邊△ABC中,P是射線AB上的一點.

1)探索實踐:

如圖1,P是邊AB的中點,D是線段CP上的一個動點,以CD為邊向右側(cè)作等邊△CDE,DEBC交于點M,連結(jié)BE

①求證:ADBE;

②連結(jié)BD,當(dāng)DB+DM最小時,試在圖2中確定D的位置,并說明理由;(要求用尺規(guī)作圖,保留作圖痕跡)

③在②的條件下,求△CME與△ACM的面積之比.

2)思維拓展:

如圖3,點P在邊AB的延長線上,連接CP,點B關(guān)于直線CP的對稱點為B',連結(jié)AB'CB',AB'BC于點N,交直線CP于點G,連結(jié)BG.請判斷∠AGC與∠AGB的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ABC=90°,BDAC邊上的中線.

(1)按如下要求尺規(guī)作圖,保留作圖痕跡,標(biāo)注相應(yīng)的字母:過點C作直線CE,使CEBC于點C,交BD的延長線于點E,連接AE;

(2)求證:四邊形ABCE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實踐﹣猜想、證明與拓廣

問題情境:

數(shù)學(xué)課上同學(xué)們探究正方形邊上的動點引發(fā)的有關(guān)問題,如圖1,正方形ABCD中,點EBC邊上的一點,點D關(guān)于直線AE的對稱點為點F,直線DFAB于點H,直線FB與直線AE交于點G,連接DG,CG.

猜想證明

(1)當(dāng)圖1中的點E與點B重合時得到圖2,此時點G也與點B重合,點H與點A重合.同學(xué)們發(fā)現(xiàn)線段GFGD有確定的數(shù)量關(guān)系和位置關(guān)系,其結(jié)論為:   ;

(2)希望小組的同學(xué)發(fā)現(xiàn),圖1中的點E在邊BC上運(yùn)動時,(1)中結(jié)論始終成立,為證明這兩個結(jié)論,同學(xué)們展開了討論:

小敏:根據(jù)軸對稱的性質(zhì),很容易得到“GFGD的數(shù)量關(guān)系”…

小麗:連接AF,圖中出現(xiàn)新的等腰三角形,如AFB,…

小凱:不妨設(shè)圖中不斷變化的角∠BAF的度數(shù)為n,并設(shè)法用n表示圖中的一些角,可證明結(jié)論.

請你參考同學(xué)們的思路,完成證明;

(3)創(chuàng)新小組的同學(xué)在圖1中,發(fā)現(xiàn)線段CGDF,請你說明理由;

聯(lián)系拓廣:

(4)如圖3若將題中的正方形ABCD”變?yōu)?/span>菱形ABCD“,ABC=α,其余條件不變,請?zhí)骄俊?/span>DFG的度數(shù),并直接寫出結(jié)果(用含α的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】任丘市舉辦一場中學(xué)生乒乓球比賽,比賽的費(fèi)用y(元)包括兩部分:一部分是租用比賽場地等固定不變的費(fèi)用b(元),另一部分費(fèi)用與參加比賽的人數(shù)(x)人成正比.當(dāng)x20時,y1600;當(dāng)x30時,y2000

1)求yx之間的函數(shù)關(guān)系式;

2)如果承辦此次比賽的組委會共籌集;經(jīng)費(fèi)6350元,那么這次比賽最多可邀請多少名運(yùn)動員參賽?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A,B的坐標(biāo)分別為(-4,5),(-2,1).

(1)寫出點C及點C關(guān)于y軸對稱的點C的坐標(biāo);

(2)請作出△ABC關(guān)于y軸對稱的△ABC′;

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰RtACB,∠ACB90°,ACBC,點A、C分別在x軸、y軸的正半軸上.

1)如圖1,求證:∠BCO=∠CAO

2)如圖2,若OA5,OC2,求B點的坐標(biāo)

3)如圖3,點C0,3),Q、A兩點均在x軸上,且SCQA18.分別以AC、CQ為腰在第一、第二象限作等腰RtCAN、等腰RtQCM,連接MNy軸于P點,OP的長度是否發(fā)生改變?若不變,求出OP的值;若變化,求OP的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案