【題目】如圖,在ABC中,AB=AC=4,BAC=90°,點D在邊AB上,BECD,AECD,垂足為F,且EF=2,點G在線段CF上,若∠GAF=45°,則ACG的面積為_____

【答案】﹣1

【解析】

首先證明△CAF≌△ABE,推出AE=CF,設AF=x,則CF=AE=x+2,在RtACF中,根據(jù)AC2=AF2+CF2,可得42=x2+(x+2)2,求出x即可解決問題;

∴∠AFD=AEB=AFC=90,

∴∠CAF+EAB=90,EAB+ABE=90,

∴∠CAF=ABE

AC=AB,

CAFABE

AE=CF,設AF=x,則CF=AE=x+2,

RtACF,AC2=AF2+CF2

42=x2+(x+2)2,

x=1+1 (舍棄)

∵∠GAF=45,AFG=90

AF=FG=1,CG=CFFG=1+(1)=2,

SAGC=CGAF=1,

故答案為:1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在四邊形ABCD中,點EF分別是AB、CD的中點,過點EAB的垂線,過點FCD的垂線,兩垂線交于點G,連接AGBG、CG、DG,且∠AGD∠BGC

1)求證:ADBC;

2)求證:△AGD∽△EGF;

3)如圖2,若ADBC所在直線互相垂直,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的邊ADy軸,垂足為點E,頂點A在第二象限,頂點By軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象同時經(jīng)過頂點C,D.若點C的橫坐標為5,BE=3DE,則k的值為( 。

A. B. 3 C. D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是用4個全等的直角三角形與1個小正方形鑲嵌而成的正方形圖案.已知大正方形面積為49,小正方形面積為4,若用,表示直角三角形的兩直角邊,下列四個說法:①;②;③;④;其中說法正確的是  

A. ①②B. ①②③C. ①②④D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把下列各數(shù)分別填入相應的集合里:

,2.525525552…(相鄰兩個2之間的5的個數(shù)逐個加1),0,,0.12,,,

1)負數(shù)集合:{ …}

2)非負整數(shù)集合:{ …};

3)分數(shù)集合:{ …};

4)無理數(shù)集合:{ …}

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是等邊三角形ABC內(nèi)的一點,連接PA,PB,PC,以BP為邊作∠PBQ=60°,且BQ=BP,連接CQ

(1) 觀察并猜想APCQ之間的大小關系,并證明你的結(jié)論;

(2) PAPBPC=345,連接PQ,試判斷PQC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下列材料,然后解決后面的問題.

材料:一個三位數(shù)(百位數(shù)為a,十位數(shù)為b,個位數(shù)為c),若a+c=b,則稱這個三整數(shù)協(xié)和數(shù),同時規(guī)定c=(k≠0),k稱為協(xié)和系數(shù),如264,因為它的百位上數(shù)字2與個位數(shù)字4之和等于十位上的數(shù)字6,所有264協(xié)和數(shù),則協(xié)和數(shù)”k=2×4=8.

(1)對于協(xié)和數(shù),求證:協(xié)和數(shù)能被11整除.

(2)已知有兩個十位數(shù)相同的協(xié)和數(shù),(a1>a2),且k1﹣k2=1,若y=k1+k2,用含b的式子表示y.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O是等邊△ABC內(nèi)一點,D是△ABC外的一點,∠AOB110°,∠BOCα,△BOC≌△ADC,∠OCD60°,連接OD

1)求證:△OCD是等邊三角形;

2)當α150°時,試判斷△AOD的形狀,并說明理由;

3)探究:當α為多少度時,△AOD是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公園有一個拋物線形狀的觀景拱橋ABC,其橫截面如圖所示,在圖中建立的直角坐標系中,拋物線的解析式為y=﹣+c且過頂點C(0,5)(長度單位:m)

(1)直接寫出c的值;

(2)現(xiàn)因搞慶典活動,計劃沿拱橋的臺階表面鋪設一條寬度為1.5m的地毯,地毯的價格為20元/m2,求購買地毯需多少元?

(3)在拱橋加固維修時,搭建的“腳手架”為矩形EFGH(H、G分別在拋物線的左右側(cè)上),并鋪設斜面EG.已知矩形EFGH的周長為27.5m,求斜面EG的傾斜角GEF的度數(shù).(精確到0.1°)

查看答案和解析>>

同步練習冊答案