解:
(1)令x=0,y=0-1=-1,
∴點(diǎn)C的坐標(biāo)(0,-1);
(2)①平移后二次函數(shù)的解析式為y=-
(x-2)
2+n,
由題意知:過(guò)C,A,B三點(diǎn)的圓的圓心一定在直線x=2上,點(diǎn)C為定點(diǎn).
∴當(dāng)圓的半徑等于點(diǎn)C到直線x=2的距離時(shí),圓的半徑最小,從而圓的面積最小.
此時(shí),圓的半徑為2,面積為4π.
設(shè)圓心為M,直線x=2與x軸交于點(diǎn)D,連接AM,則AM=2,
∵CM=2,OC=1,∴DM=1.
在Rt△AMD中,AD=
=
=
,
∴點(diǎn)A的坐標(biāo)是(2-
,0),代入拋物線得n=
.
∴當(dāng)n=
時(shí),過(guò)C,A,B三點(diǎn)的圓的面積最小,最小面積為4π;
②如圖2,當(dāng)點(diǎn)P在直線y=
x-1下方時(shí),
設(shè)直線y=
x-1與x軸相交于點(diǎn)E,過(guò)點(diǎn)P作PN⊥EC于點(diǎn)N,PM∥y軸交EC于點(diǎn)M,則∠PMN=∠OCE,∠PNM=∠COE=90°,
∴△PMN∽△ECO,
∴
,
令y=
x-1=0.則x=
,即OE=
,CE=
,
設(shè)點(diǎn)P的橫坐標(biāo)為m,則PM=MH+PH,
即PM=
m-1+
(m-2)
2-
=
(m
2-m-3),
∴PN=
=
(m
2-m-3),
根據(jù)題意,
(m
2-m-3)=m,
解得m
1=3+2
,m
2=3-2
(不合題意,舍去),
即點(diǎn)P的坐標(biāo)是(3+2
,-
),
當(dāng)點(diǎn)P在直線y=
x-1上方時(shí),同理可得
(m
2-m-3)=-m,
解得m
3=-
-2(不合題意,舍去),m
4=
-2,即點(diǎn)P的坐標(biāo)是(
-2,2
-5),
綜上,點(diǎn)P的坐標(biāo)是(3+2
,-
)或(
-2,2
-5).
分析:(1)由直線y=
x-1與y軸交于點(diǎn)C,令x=0,求得y的值,即可求得點(diǎn)C的坐標(biāo);
(2)①首先設(shè)平移后二次函數(shù)的解析式為y=-
(x-2)
2+n,由過(guò)C,A,B三點(diǎn)的圓的圓心一定在直線x=2上,點(diǎn)C為定點(diǎn),即可得:當(dāng)圓的半徑等于點(diǎn)C到直線x=2的距離時(shí),圓的半徑最小,從而圓的面積最小,則可求得n的值;
②分別從當(dāng)點(diǎn)P在直線AC下方時(shí)與當(dāng)點(diǎn)P在直線AC上方時(shí)去分析,借助于相似三角形的對(duì)應(yīng)邊成比例即可求得答案.
點(diǎn)評(píng):此題考查了一次函數(shù)與坐標(biāo)軸交點(diǎn)的特點(diǎn),二次函數(shù)的平移以及圓的性質(zhì)等知識(shí).此題綜合性很強(qiáng),解題的關(guān)鍵是注意數(shù)形結(jié)合思想與分類討論思想的應(yīng)用.