【題目】如圖1,在平面直角坐標(biāo)系中,拋物線與軸交于、兩點(點在點的左側(cè)),與軸交于點.對稱軸為直線,點在拋物線上.
(1)如圖1,為直線下方拋物線上的一點,連接、.當(dāng)的面積最大時,在直線上取一點,過作軸的垂線,垂足為點,連接,.若時,求的值;
(2)將拋物線沿軸正方向平移得到新拋物線,經(jīng)過原點.與軸的另一個交點為.設(shè)是拋物線上任意一點,點在直線上,能否成為以點為直角頂點的等腰直角三角形?若能、直接寫出點的坐標(biāo),若不能,請說明理由.
【答案】(1)(2)能,P點的坐標(biāo)為:或 或或
【解析】
(1) 先求出A、B、C、 D兩點坐標(biāo),利用待定系數(shù)法求出直線CD的直線方程;如圖1中,過點E作EG //y軸交直線CD于G.設(shè)E (m,+2m-3),則G (m,-2m-3),GE=--4m.根據(jù)S△EDC=·EG·|DX|=(- -4m) ×4=-2 +8,可知m=-2時,△DEC的面積最大,此時E(-2, -3) ,再證明Rt△EHM≌Rt△BON即可解決問題;
(2)假設(shè)存在.如圖2中.作P M⊥x軸于M,P N⊥對稱軸|于N,對稱軸l|交0A于K,由△PMF≌△PNQ,推出PM=PN,推出點P在∠MKN的角平分線上,只要求出直線KP的解析式,構(gòu)建方程組即可求得P、P的坐標(biāo),同法可求P、 P4的坐標(biāo).
解:(1)由題意A(1,0),B(-3,0),C(0,-3),D(-4,5),
設(shè)直線CD的解析式為y= kx+b,則有
b=-3,-4k+b=5 ∴k=-2,b=-3
∴直線CD的解析式為y=-2x-3
如圖1中,過點E作EG∥y軸交直線CD于G,設(shè)E(m,+2m-3),則G(m,-2m-3)
∴GE=-m-4m
∴S△EDC=·EG·|DX|=(--4m) ×4=-2 +8,
∵-2<0,∴m=-2時,△DEC的面積最大,此時E(-2,-3),
∵C(0,-3),
∴EC∥AB,設(shè)CE交對稱軸于H,∵B(1,0),
∴EH=OB=1,
∵EM=BN,
∴Rt△EHM≌Rt△BON,
∴MH=ON=OC=
∴EM=BN=,
∴EM+MN+MB=
(2)假設(shè)存在這樣的點,如圖2,作PM⊥x軸于M,PN⊥對稱軸l于N,對稱軸l交OA于K,
由PQ=PF,∠QPF=90°,∠NQP =∠MFP ,可得△PMF≌△PNQ
∴PM=PN,∴點P在∠MKN的角平分線上,
∵直線KP過(-1,0),與x軸成45°角,過二、三、四象限,
∴直線KP的解析式為y=-x-1,
∵拋物線向右平移了 3個單位,
∴拋物線y的解析式為y=x-4x,
點P 是拋物線y與直線KP 的交點
由
解得或
∴P,P
同法可知,直線y=x+1與拋物線的交點P3、P4符合條件,
由
解得或
∴P3
P4
綜上所述,滿足條件的點P坐標(biāo)為:
或 或或
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點的坐標(biāo)分別為A(1,4),B(1,1),C(3,1).
(1)畫出△ABC關(guān)于原點成中心對稱的△A1B1C1,并寫出點C1的坐標(biāo);
(2)△ABC繞著點B逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后對應(yīng)的△A2BC2,并寫出點A2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016廣西賀州市)如圖,將線段AB繞點O順時針旋轉(zhuǎn)90°得到線段A′B′,那么A(﹣2,5)的對應(yīng)點A′的坐標(biāo)是( 。
A. (2,5) B. (5,2) C. (2,﹣5) D. (5,﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠BAC=α,點D在邊AC上(不與點A,C重合)連接BD,點K為線段BD的中點,過點D作DE⊥AB于點E,連結(jié)CK,EK,CE,將△ADE繞點A順時針旋轉(zhuǎn)一定的角度(旋轉(zhuǎn)角小于90°)
(1)如圖1,若α=45°,則△ECK的形狀為______;
(2)在(1)的條件下,若將圖1中的△ADE繞點A旋轉(zhuǎn),使得D,E,B三點共線,點K為線段BD的中點,如圖2所示,求證:BE-AE=2CK;
(3)若△ADE繞點A旋轉(zhuǎn)至圖3位置時,使得D,E,B三點共線,點K仍為線段BD的中點,請你直接寫出BE,AE,CK三者之間的數(shù)量關(guān)系(用含α的三角函數(shù)表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近幾年購物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進行了抽樣調(diào)查.調(diào)查結(jié)果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對某超市一天內(nèi)購買者的支付方式進行調(diào)查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)本次一共調(diào)查了多少名購買者?
(2)請補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應(yīng)的圓心角為 度.
(3)若該超市這一周內(nèi)有1600名購買者,請你估計使用A和B兩種支付方式的購買者共有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 某蛋糕店出售網(wǎng)紅“奶昔包”,成本為30元/件,每天銷售y(件)與銷售單價x(元)之間存在一次函數(shù)關(guān)系,當(dāng)以40元每件出售時,每天可以賣300件,當(dāng)以55元每件出售時,每天可以賣150件.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)如果規(guī)定每天“奶昔包”的銷售量不低于240件,當(dāng)銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?
(3)該蛋糕店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試直接寫出該“奶昔包”銷售單價的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點,過點O作OD⊥AB,交BC的延長線于D,交AC于點E,F是DE的中點,連接CF.
(1)求證:CF是⊙O的切線.
(2)若∠A=22.5°,求證:CE=CB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BA=BC,以AB為直徑的⊙O分別交AC、BC于點D、E,BC的延長線于⊙O的切線AF交于點F.
(1)求證:∠ABC=2∠CAF;
(2)若AC=2,CE:EB=1:4,求CE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com