解方程:
(1)(x-3)2=1;
(2)x2-2x-1=0;
(3)x(2x+1)-6(2x+1)=0.

解:(1)(x-3)2=1
x-3=±1
x-3=1或x-3=-1
∴x1=4,x2=2.
(2)x2-2x-1=0
x2-2x+1=2
(x-1)2=2

∴x1=1+,x2=1-
(3)(2x+1)(x-6)=0
2x+1=0或x-6=0
x1=-或x2=6.
分析:(1)先把方程變成x2=a的形式,可以利用直接開方即可求解;
(2)利用配方法先把方程左邊配成完全平方式再直接開平方即可;
(3)提取公因式2x+1即可分解因式,即可把原方程轉(zhuǎn)化為兩個一元一次方程求解.
點評:主要考查直接開平方法、配方法和因式分解法解方程.解方程時要先觀察,根據(jù)方程的特點選擇合適的方法.
用直接開方法求一元二次方程的解的類型有:x2=a(a≥0);ax2=b(a,b同號且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同號且a≠0).
法則:要把方程化為“左平方,右常數(shù),先把系數(shù)化為1,再開平方取正負,分開求得方程解”.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、解方程x2-|x|-2=0,
解:1.當x≥0時,原方程化為x2-x-2=0,解得:x1=2,x2=-1[不合題意,舍去].
2.當x<o時,原方程化為:x2+x-2=0,解得:x1=1,(不合題意,舍去)x2=-2.所以原方程的根為:x1=2,x2=-2
請參照例題解方程:x2-|x-1|-1=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)解方程:4(x-1)=1-x
(2)解方程:
x+1
2
-
2-3x
3
=1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

解方程:
x-
x-1
2
=
2
3
-
x+2
3

解:去分母,得6x-3x+1=4-2x+4…①
即-3x+1=-2x+8…②
移項,得-3x+2x=8-1…③
合并同類項,得-x=7…④
∴x=-7…⑤
上述解方程的過程中,是否有錯誤?答:
 
;如果有錯誤,則錯在
 
步.如果上述解方程有錯誤,請你給出正確的解題過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

計算與解方程:
(1)
3-x
2x-4
÷(x+2-
5
x-2
)
;
(2)
x
x-y
y2
x+y
-
x4y
x4-y4
÷
x2
x2+y2
;
(3)
5
2x+3
=
3
x-1
;
(4)
x
x+2
-
x+2
x-2
=
8
x2-4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

計算下列各題:
(1)先化簡再求值:
x2+x
x
÷(x+1)+
x2-x-2
x-2
,(其中x=-3).
(2)解方程
1
x+1
+
2
x-1
=
4
x2-1

查看答案和解析>>

同步練習冊答案