【題目】
如圖,在中,已知,,點(diǎn)是線段上的動(dòng)點(diǎn)(不與端點(diǎn)重合),點(diǎn)是線段上的動(dòng)點(diǎn),連接、,若在點(diǎn)、點(diǎn)的運(yùn)動(dòng)過(guò)程中,始終保證。
(1)求證:;
(2)當(dāng)以點(diǎn)為圓心,以為半徑的圓與相切時(shí),求的長(zhǎng);
(3)探究:在點(diǎn)、點(diǎn)的運(yùn)動(dòng)過(guò)程中,可能為等腰三角形嗎?若能,求出的長(zhǎng);若不能,請(qǐng)說(shuō)明理由。
【答案】(1)證明見(jiàn)解析;(2)BE的長(zhǎng)為1或5;(3)當(dāng)BE的長(zhǎng)為1或時(shí),△CFE為等腰三角形.
【解析】試題分析(1)由∠B +∠B CE=∠CEA=∠CEF+∠FEA,∠CEF=∠B即可得∠AEF=∠BCE;(2)設(shè)⊙C與BA切于點(diǎn)M,則CM=CF,CM⊥BA(如圖),根據(jù)等腰三角形的性質(zhì)可得BM=AM==3,在Rt△AMC中,根據(jù)勾股定理可得CF =CM=4,即可得AF=1,再證得△AEF∽△BCE,設(shè)設(shè)BE長(zhǎng)為x,則EA長(zhǎng)為6-x,根據(jù)相似三角形的性質(zhì)列出方程求解即可;(3)分CE=CF,CF=EF,CF=EF三種情況求解即可.
試題解析:
(1)證明:∵∠B +∠B CE=∠CEA =∠CEF+∠FEA
∠CEF=∠B
∴∠AEF=∠BCE
(2)設(shè)⊙C與BA切于點(diǎn)M,則CM=CF,CM⊥BA
∵CA=CB,CM⊥BA ∴BM=AM==3
Rt△AMC中,AC=5,AM=3,
∴CF =CM=4 ∴AF=1
∵ CA=CB ∴∠B=∠C
由(1)知∠AEF=∠BCE
∴△AEF∽△BCE
∴
設(shè)BE長(zhǎng)為x,則EA長(zhǎng)為6-x
∴
解得:x1=1,x2=5
答:BE的長(zhǎng)為1或5.
(3)可能.
①當(dāng)CE=CF時(shí),∠3=∠2=∠A
∴EF∥AB,此時(shí)E與B重合,與條件矛盾,不成立.
②當(dāng)CF=EF時(shí),
又∵△AEF∽△BCE
∴△AEF≌△BCE
∴AE=BC=5
∴BE=AB-5=1
③當(dāng)CF=EF時(shí),∠1=∠2=∠A=∠B
△FCE∽△CBA
∴
∴
∵△AEF∽△BCE
∴
∴
∴
答:當(dāng)BE的長(zhǎng)為1或時(shí),△CFE為等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列調(diào)查中,需要全面調(diào)查的是( )
A. 對(duì)乘坐飛機(jī)旅客行李的檢查 B. 為了解北京市的空氣質(zhì)量
C. 調(diào)查某一批次盒裝牛奶的合格情況 D. 了解一批炮彈的殺傷半徑
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果批發(fā)商場(chǎng)經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情況下,若每千克漲價(jià)1元,日銷售量將減少20千克.現(xiàn)該商場(chǎng)要保證每天盈利6000元,同時(shí)又要使顧客得到實(shí)惠,那么每千克應(yīng)漲價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O(shè)為坐標(biāo)原點(diǎn),OA所在直線為x軸,建立如圖所示的平面直角坐標(biāo)系,點(diǎn)B在第一象限內(nèi).將Rt△OAB沿OB折疊后,點(diǎn)A落在第一象限內(nèi)的點(diǎn)C處.
(1)求點(diǎn)C的坐標(biāo);
(2)若拋物線y=ax2+bx(a≠0)經(jīng)過(guò)C、A兩點(diǎn),求此拋物線的解析式;
(3)若拋物線的對(duì)稱軸與OB交于點(diǎn)D,點(diǎn)P為線段DB上一點(diǎn),過(guò)P作y軸的平行線,交拋物線于點(diǎn)M.問(wèn):是否存在這樣的點(diǎn)P,使得四邊形CDPM為等腰梯形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】
如圖,正比例函數(shù)與反比例函數(shù)的圖象交于點(diǎn)。
(1)求這兩個(gè)函數(shù)的表達(dá)式;
(2)如圖1,若,且其兩邊分別與兩坐標(biāo)軸的正半軸交于點(diǎn)、點(diǎn)。求四邊形的面積;
(3)如圖2,點(diǎn)是反比例函數(shù)圖象上的一點(diǎn),過(guò)點(diǎn)作x軸、軸的垂線,垂足分別為、,交直線于點(diǎn),過(guò)作x軸的垂線,垂足為。設(shè)點(diǎn)的橫坐標(biāo)為,當(dāng)時(shí),是否存在點(diǎn),使得四邊形為正方形?若存在,求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將三角形ABC沿DE折疊,使點(diǎn)A落在BC上的點(diǎn)F處,且DE∥BC,若∠B=70,則∠BDF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把方程x(5x﹣4)+1=2化為一般形式,如果二次項(xiàng)系數(shù)為5,則一次項(xiàng)系數(shù)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com