(2010•撫順)如圖所示,已知a∥b,∠1=28°,∠2=25°,則∠3=    度.
【答案】分析:過∠3作a的平行線,則∠1=∠4,∠2=∠5,所以∠3=∠4+∠5=53°.
解答:解:過∠3的頂點(diǎn)作a的平行線,則也平行于b,
則∠1=∠4,∠2=∠5(內(nèi)錯(cuò)角相等),
∵∠3=∠4+∠5,
∴∠3=∠4+∠5=53°.
所以答案是53°.
點(diǎn)評(píng):解答此類題,若平行線無截線,可適當(dāng)構(gòu)造截線轉(zhuǎn)化角的關(guān)系.兩直線平行時(shí),應(yīng)該想到它們的性質(zhì),由兩直線平行的關(guān)系得到角之間的數(shù)量關(guān)系,從而達(dá)到解決問題的目的.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《三角形》(11)(解析版) 題型:解答題

(2010•撫順)如圖所示,平面直角坐標(biāo)系中,拋物線y=ax2+bx+c經(jīng)過A(0,4)、B(-2,0)、C(6,0).過點(diǎn)A作AD∥x軸交拋物線于點(diǎn)D,過點(diǎn)D作DE⊥x軸,垂足為點(diǎn)E.點(diǎn)M是四邊形OADE的對(duì)角線的交點(diǎn),點(diǎn)F在y軸負(fù)半軸上,且F(0,-2).
(1)求拋物線的解析式,并直接寫出四邊形OADE的形狀;
(2)當(dāng)點(diǎn)P、Q從C、F兩點(diǎn)同時(shí)出發(fā),均以每秒1個(gè)長度單位的速度沿CB、FA方向運(yùn)動(dòng),點(diǎn)P運(yùn)動(dòng)到O時(shí)P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒,在運(yùn)動(dòng)過程中,以P、Q、O、M四點(diǎn)為頂點(diǎn)的四邊形的面積為S,求出S與t之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)在拋物線上是否存在點(diǎn)N,使以B、C、F、N為頂點(diǎn)的四邊形是梯形?若存在,直接寫出點(diǎn)N的坐標(biāo);不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2010•撫順)如圖所示,平面直角坐標(biāo)系中,拋物線y=ax2+bx+c經(jīng)過A(0,4)、B(-2,0)、C(6,0).過點(diǎn)A作AD∥x軸交拋物線于點(diǎn)D,過點(diǎn)D作DE⊥x軸,垂足為點(diǎn)E.點(diǎn)M是四邊形OADE的對(duì)角線的交點(diǎn),點(diǎn)F在y軸負(fù)半軸上,且F(0,-2).
(1)求拋物線的解析式,并直接寫出四邊形OADE的形狀;
(2)當(dāng)點(diǎn)P、Q從C、F兩點(diǎn)同時(shí)出發(fā),均以每秒1個(gè)長度單位的速度沿CB、FA方向運(yùn)動(dòng),點(diǎn)P運(yùn)動(dòng)到O時(shí)P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒,在運(yùn)動(dòng)過程中,以P、Q、O、M四點(diǎn)為頂點(diǎn)的四邊形的面積為S,求出S與t之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)在拋物線上是否存在點(diǎn)N,使以B、C、F、N為頂點(diǎn)的四邊形是梯形?若存在,直接寫出點(diǎn)N的坐標(biāo);不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年遼寧省撫順市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•撫順)如圖所示,平面直角坐標(biāo)系中,拋物線y=ax2+bx+c經(jīng)過A(0,4)、B(-2,0)、C(6,0).過點(diǎn)A作AD∥x軸交拋物線于點(diǎn)D,過點(diǎn)D作DE⊥x軸,垂足為點(diǎn)E.點(diǎn)M是四邊形OADE的對(duì)角線的交點(diǎn),點(diǎn)F在y軸負(fù)半軸上,且F(0,-2).
(1)求拋物線的解析式,并直接寫出四邊形OADE的形狀;
(2)當(dāng)點(diǎn)P、Q從C、F兩點(diǎn)同時(shí)出發(fā),均以每秒1個(gè)長度單位的速度沿CB、FA方向運(yùn)動(dòng),點(diǎn)P運(yùn)動(dòng)到O時(shí)P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒,在運(yùn)動(dòng)過程中,以P、Q、O、M四點(diǎn)為頂點(diǎn)的四邊形的面積為S,求出S與t之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)在拋物線上是否存在點(diǎn)N,使以B、C、F、N為頂點(diǎn)的四邊形是梯形?若存在,直接寫出點(diǎn)N的坐標(biāo);不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年遼寧省撫順市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•撫順)如圖所示,在完全重合放置的兩張矩形紙片ABCD中,AB=4,BC=8,將上面的矩形紙片折疊,使點(diǎn)C與點(diǎn)A重合,折痕為EF,點(diǎn)D的對(duì)應(yīng)點(diǎn)為G,連接DG,則圖中陰影部分的面積為( )

A.
B.6
C.
D.

查看答案和解析>>

同步練習(xí)冊答案