【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結(jié)論:①abc<0;②a-b+c>0;③ 2a+b=0;④b2-4ac>0 ⑤a+b+c>m(am+b)+c,(m>1的實數(shù)),其中正確的結(jié)論有()
A. 1個 B. 2 C. 3 D. 4個
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列給出的條件中,能判定四邊形ABCD為平行四邊形的是()
A.AB=BC,CD=DAB.AB//CD,AD=BC
C.AB//CD,∠A=∠CD.∠A=∠B,∠C=∠D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】邊長為2的正方形ABCD與邊長為2 的正方形AEFG按圖(1)位置放置,AD與AE在同一直線上,AB與AG在同一直線上,將正方形ABCD繞點A逆時針旋轉(zhuǎn)如圖(2),線段DG與線段BE相交,交點為H,則△GHE與△BHD面積之和的最大值為_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過A(﹣1,0)、B(3,0)兩點.
(1)求拋物線的解析式和頂點坐標(biāo);
(2)當(dāng)0<x<3時,求y的取值范圍;
(3)點P為拋物線上一點,若,求出此時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC中,∠B=∠C,點D在BC邊上,點E在AC邊上,且∠ADE=∠AED,連結(jié)DE.
(1)若∠BAC=100°,∠DAE=40°,則∠CDE= ,此時= ;
(2)若點D在BC邊上(點B、C除外)運動,試探究∠BAD與∠CDE的數(shù)量關(guān)系并說明理由;
(3)若點D在線段BC的延長線上,點E在線段AC的延長線上(如圖②),其余條件不變,請直接寫出∠BAD與∠CDE的數(shù)量關(guān)系: ;
(4)若點D在線段CB的延長線上(如圖③)、點E在直線AC上,∠BAD=26°,其余條件不變,則∠CDE= °(友情提醒:可利用圖③畫圖分析)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用如圖1的二維碼可以進行身份識別.某校建立了一個身份識別系統(tǒng),圖2是某個學(xué)生的識別圖案,黑色小正方形表示1,白色小正方形表示0.將第一行數(shù)字從左到右依次記為,,,,那么可以轉(zhuǎn)換為該生所在班級序號,其序號為.如圖2第一行數(shù)字從左到右依次為0,1,0,1,序號為,表示該生為5班學(xué)生.表示6班學(xué)生的識別圖案是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】網(wǎng)癮低齡化問題已引起社會各界的高度關(guān)注,有關(guān)部門在全國范圍內(nèi)對歲的網(wǎng)癮人群進行了簡單的隨機抽樣調(diào)查,得到了如圖所示的兩個不完全統(tǒng)計圖.
請根據(jù)圖中的信息,解決下列問題:
()求條形統(tǒng)計圖中的值.
()求扇形統(tǒng)計圖中歲部分所占的百分比;
()據(jù)報道,目前我國歲網(wǎng)癮人數(shù)約為萬,請估計其中歲的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com