【題目】二次函數(shù) (a,b,c為常數(shù),且 )中的 與 的部分對(duì)應(yīng)值如表:
… | -1 | 0 | 1 | 3 | … | |
… | -1 | 3 | 5 | 3 | … |
下列結(jié)論:
① ;
②當(dāng) 時(shí),y的值隨x值的增大而減;
③3是方程 的一個(gè)根;
④當(dāng) 時(shí), .
其中正確的個(gè)數(shù)為( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
【答案】B
【解析】①由圖表中數(shù)據(jù)可得出:x=1時(shí),y=5,所以二次函數(shù)y=ax2+bx+c開(kāi)口向下,a<0;又x=0時(shí),y=3,所以c=3>0,所以ac<0,故①正確;②∵二次函數(shù)y=ax2+bx+c開(kāi)口向下,且對(duì)稱(chēng)軸為x=1.5,∴當(dāng)x≥1.5時(shí),y的值隨x值的增大而減小,故②錯(cuò)誤;③∵x=3時(shí),y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax2+(b-1)x+c=0的一個(gè)根,故③正確;④∵x=-1時(shí),ax2+bx+c=-1,∴x=-1時(shí),ax2+(b-1)x+c=0,∵x=3時(shí),ax2+(b-1)x+c=0,且函數(shù)有最大值,∴當(dāng)-1<x<3時(shí),ax2+(b-1)x+c>0,故④正確.
所以答案是:B.
【考點(diǎn)精析】利用二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系和二次函數(shù)的最值對(duì)題目進(jìn)行判斷即可得到答案,需要熟知二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開(kāi)口方向:a>0時(shí),拋物線開(kāi)口向上; a<0時(shí),拋物線開(kāi)口向下b與對(duì)稱(chēng)軸有關(guān):對(duì)稱(chēng)軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c);如果自變量的取值范圍是全體實(shí)數(shù),那么函數(shù)在頂點(diǎn)處取得最大值(或最小值),即當(dāng)x=-b/2a時(shí),y最值=(4ac-b2)/4a.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PQ為圓O的直徑,點(diǎn)B在線段PQ的延長(zhǎng)線上,OQ=QB=1,動(dòng)點(diǎn)A在圓O的上半圓運(yùn)動(dòng)(含P、Q兩點(diǎn)),
(1)當(dāng)線段AB所在的直線與圓O相切時(shí),求弧AQ的長(zhǎng)(圖1);
(2)若∠AOB=120°,求AB的長(zhǎng)(圖2);
(3)如果線段AB與圓O有兩個(gè)公共點(diǎn)A、M,當(dāng)AO⊥PM于點(diǎn)N時(shí),求tan∠MPQ的值(圖3).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行于x軸的直線AC分別交函數(shù)y1=x2(x≥0)與y2= (x≥0)的圖象于B、C兩點(diǎn),過(guò)點(diǎn)C作y軸的平行線交y1的圖象于點(diǎn)D,直線DE∥AC,交y2的圖象于點(diǎn)E,則 = .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠BAC 的角平分線與 BC 的垂直平分線交于點(diǎn) D,DE⊥AB, DF⊥AC,垂足分別為 E,F(xiàn).若 AB=10,AC=8,求 BE 長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】你能找出規(guī)律嗎?
(1)計(jì)算:= , = ,= ,= .
(2)請(qǐng)按找到的規(guī)律計(jì)算:;
(3)已知:a=,b=,則= (用含a、b的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)家華羅庚在一次出國(guó)訪問(wèn)途中,看到飛機(jī)上鄰座的乘客閱讀的雜志上有一道智力題:求59319的立方根.華羅庚脫口而出:39.眾人感覺(jué)十分驚奇,請(qǐng)華羅庚給大家解讀其中的奧秘.
你知道怎樣迅速準(zhǔn)確的計(jì)算出結(jié)果嗎?請(qǐng)你按下面的問(wèn)題試一試:
①,又,
,∴能確定59319的立方根是個(gè)兩位數(shù).
②∵59319的個(gè)位數(shù)是9,又,∴能確定59319的立方根的個(gè)位數(shù)是9.
③如果劃去59319后面的三位319得到數(shù)59,
而,則,可得,
由此能確定59319的立方根的十位數(shù)是3
因此59319的立方根是39.
(1)現(xiàn)在換一個(gè)數(shù)195112,按這種方法求立方根,請(qǐng)完成下列填空.
①它的立方根是_______位數(shù).
②它的立方根的個(gè)位數(shù)是_______.
③它的立方根的十位數(shù)是__________.
④195112的立方根是________.
(2)請(qǐng)直接填寫(xiě)結(jié)果:
①________.
②________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是由個(gè)同樣大小的小正方體搭成的物體.
(1)請(qǐng)畫(huà)陰影分別表示從正面、上面觀察得到的平面圖形的示意圖;
(2)分別從正面、上面觀察這個(gè)圖形,得到的平面圖形不變的情況下,你認(rèn)為最多還可以添加 個(gè)小正方體.
從正面看 從上面看
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,TA切⊙O于點(diǎn)A,連結(jié)TB交⊙O于點(diǎn)C,∠BTA=40°,點(diǎn)M是圓上異于B,C的一個(gè)動(dòng)點(diǎn),則∠BMC的度數(shù)等于( )
A.50°
B.50°或130°
C.40°
D.40°或140°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都是1個(gè)單位長(zhǎng)度,Rt△ABC的三個(gè)頂點(diǎn)A(-2,2),B(0,5),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,得到△A1B1C,請(qǐng)畫(huà)出△A1B1C的圖形.
(2)平移△ABC,使點(diǎn)A的對(duì)應(yīng)點(diǎn)A2坐標(biāo)為(-2,-6),請(qǐng)畫(huà)出平移后對(duì)應(yīng)的△A2B2C2的圖形.
(3)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可得到△A2B2C2,請(qǐng)直接寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com