已知:關(guān)于x的二次函數(shù)(a>0),點(diǎn)A(n,y1)、B(n+1,y2)、C(n+2,y3)都在這個(gè)二次函數(shù)的圖象上,其中n為正整數(shù).
(1)y1=y2,請(qǐng)說(shuō)明a必為奇數(shù);
(2)設(shè)a=11,求使y1≤y2≤y3成立的所有n的值;
(3)對(duì)于給定的正實(shí)數(shù)a,是否存在n,使△ABC是以AC為底邊的等腰三角形?如果存在,求n的值(用含a的代數(shù)式表示);如果不存在,請(qǐng)說(shuō)明理由.
解:(1)∵點(diǎn)A(n,y1)、B(n+1,y2)都在二次函數(shù)(a>0)的圖象上,
∴。
∵y1=y2,
∴,整理得:a=2n+1。
∵n為正整數(shù),∴a必為奇數(shù)。
(2)當(dāng)a=11時(shí),∵y1<y2<y3,
∴。
化簡(jiǎn)得:。解得:。
∵n為正整數(shù),∴n=1、2、3、4。
(3)存在。
假設(shè)存在,則AB=AC,
如圖所示,過(guò)點(diǎn)B作BN⊥x軸于點(diǎn)N,過(guò)點(diǎn)A作AD⊥BN于點(diǎn)D,CE⊥BN于點(diǎn)E,
∵xA=n,xB=n+1,xC=n+2,∴AD=CE=1。
在Rt△ABD與Rt△CBE中,AB=BC,AD=CE,
∴Rt△ABD≌Rt△CBE(HL)。
∴∠BAD=∠CBE,即BN為頂角的平分線。
由等腰三角形性質(zhì)可知,點(diǎn)A、C關(guān)于BN對(duì)稱。
∴BN為拋物線的對(duì)稱軸,點(diǎn)B為拋物線的頂點(diǎn),
∴。∴。
∴存在n,使△ABC是以AC為底邊的等腰三角形,。
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線與直線交于點(diǎn)A 、B,與y軸交于點(diǎn)C.
(1)求點(diǎn)A、B的坐標(biāo);
(2)若點(diǎn)P是直線x=1上一點(diǎn),是否存在△PAB是等腰三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線與y軸交于點(diǎn)C(0,-4),與x軸交于點(diǎn)A,B,且B點(diǎn)的坐標(biāo)為(2,0)
(1)求該拋物線的解析式;
(2)若點(diǎn)P是AB上的一動(dòng)點(diǎn),過(guò)點(diǎn)P作PE∥AC,交BC于E,連接CP,求△PCE面積的最大值;
(3)若點(diǎn)D為OA的中點(diǎn),點(diǎn)M是線段AC上一點(diǎn),且△OMD為等腰三角形,求M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知拋物線的圖象與x軸的一個(gè)交點(diǎn)為B(5,0),另一個(gè)交點(diǎn)為A,且與y軸交于點(diǎn)C(0,5)。
(1)求直線BC與拋物線的解析式;
(2)若點(diǎn)M是拋物線在x軸下方圖象上的動(dòng)點(diǎn),過(guò)點(diǎn)M作MN∥y軸交直線BC于點(diǎn)N,求MN的最大值;
(3)在(2)的條件下,MN取得最大值時(shí),若點(diǎn)P是拋物線在x軸下方圖象上任意一點(diǎn),以BC為邊作平行四邊形CBPQ,設(shè)平行四邊形CBPQ的面積為S1,△ABN的面積為S2,且S1=6S2,求點(diǎn)P的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,點(diǎn)O是原點(diǎn),矩形OABC的頂點(diǎn)A在x軸的正半軸上,頂點(diǎn)C在y的正半軸上,點(diǎn)B的坐標(biāo)是(5,3),拋物線經(jīng)過(guò)A、C兩點(diǎn),與x軸的另一個(gè)交點(diǎn)是點(diǎn)D,連接BD.
(1)求拋物線的解析式;
(2)點(diǎn)M是拋物線對(duì)稱軸上的一點(diǎn),以M、B、D為頂點(diǎn)的三角形的面積是6,求點(diǎn)M的坐標(biāo);
(3)點(diǎn)P從點(diǎn)D出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿D→B勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿B→A→D勻速運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P、Q同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t為何值時(shí),以D、P、Q為頂點(diǎn)的三角形是等腰三角形?請(qǐng)直接寫出所有符合條件的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線交x軸的正半軸于點(diǎn)A,交y軸于點(diǎn)B,將此拋物線向右平移4個(gè)單位得拋物線y2,兩條拋物線相交于點(diǎn)C.
(1)請(qǐng)直接寫出拋物線y2的解析式;
(2)若點(diǎn)P是x軸上一動(dòng)點(diǎn),且滿足∠CPA=∠OBA,求出所有滿足條件的P點(diǎn)坐標(biāo);
(3)在第四象限內(nèi)拋物線y2上,是否存在點(diǎn)Q,使得△QOC中OC邊上的高h(yuǎn)有最大值?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo)及h的最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知:拋物線C1:y=x2。如圖(1),平移拋物線C1得到拋物線C2,C2經(jīng)過(guò)C1的頂點(diǎn)O和A(2,0),C2的對(duì)稱軸分別交C1、C2于點(diǎn)B、D。
(1)求拋物線C2的解析式;
(2)探究四邊形ODAB的形狀并證明你的結(jié)論;
(3)如圖(2),將拋物線C2向下平移m個(gè)單位(m>0)得拋物線C3,C3的頂點(diǎn)為G,與y軸交于M。點(diǎn)N是M關(guān)于x軸的對(duì)稱點(diǎn),點(diǎn)P()在直線MG上。問(wèn):當(dāng)m為何值時(shí),在拋物線C3上存在點(diǎn)Q,使得以M、N、P、Q為頂點(diǎn)的四邊形為平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知拋物線經(jīng)過(guò)A(﹣2,0),B(﹣3,3)及原點(diǎn)O,頂點(diǎn)為C
(1)求拋物線的函數(shù)解析式.
(2)設(shè)點(diǎn)D在拋物線上,點(diǎn)E在拋物線的對(duì)稱軸上,且以AO為邊的四邊形AODE是平行四邊形,求點(diǎn)D的坐標(biāo).
(3)P是拋物線上第一象限內(nèi)的動(dòng)點(diǎn),過(guò)點(diǎn)P作PM⊥x軸,垂足為M,是否存在點(diǎn)P,使得以P,M,A為頂點(diǎn)的三角形與△BOC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知拋物線(a>0)與x軸交于點(diǎn)B、C,與y軸交于點(diǎn)E,且點(diǎn)B在點(diǎn)C的左側(cè).
(1)若拋物線過(guò)點(diǎn)M(﹣2,﹣2),求實(shí)數(shù)a的值;
(2)在(1)的條件下,解答下列問(wèn)題;
①求出△BCE的面積;
②在拋物線的對(duì)稱軸上找一點(diǎn)H,使CH+EH的值最小,直接寫出點(diǎn)H的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com