如圖,已知拋物線y=2x2﹣2與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.

(1)寫出以A,B,C為頂點(diǎn)的三角形面積;
(2)過點(diǎn)E(0,6)且與x軸平行的直線l1與拋物線相交于M、N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左側(cè)),以MN為一邊,拋物線上的任一點(diǎn)P為另一頂點(diǎn)做平行四邊形,當(dāng)平行四邊形的面積為8時(shí),求出點(diǎn)P的坐標(biāo);
(3)過點(diǎn)D(m,0)(其中m>1)且與x軸垂直的直線l2上有一點(diǎn)Q(點(diǎn)Q在第一象限),使得以Q,D,B為頂點(diǎn)的三角形和以B,C,O為頂點(diǎn)的三角形相似,求線段QD的長(zhǎng)(用含m的代數(shù)式表示).
(1)2;(2)(,8)或(,8)或(,4)或(,4);(3)2m-2或

試題分析:(1)在二次函數(shù)的解析式中,令y=0,求出x=±1,得到AB=2,令x=0時(shí),求出y=-2,得到OC=2,然后根據(jù)三角形的面積公式即可求出△ABC的面積;
(2)先將y=6代入,求出x=±2,得到點(diǎn)M與點(diǎn)N的坐標(biāo),則MN=4,再由平行四邊形的面積公式得到MN邊上的高為2,則P點(diǎn)縱坐標(biāo)為8或4.分兩種情況討論:①當(dāng)P點(diǎn)縱坐標(biāo)為8時(shí),將y=8代入,求出x的值,得到點(diǎn)P的坐標(biāo);②當(dāng)P點(diǎn)縱坐標(biāo)為4時(shí),將y=4代入,求出x的值,得到點(diǎn)P的坐標(biāo);
(3)由于∠QDB=∠BOC=90°,所以以Q,D,B為頂點(diǎn)的三角形和以B,C,O為頂點(diǎn)的三角形相似時(shí),分兩種情況討論:①OB與BD邊是對(duì)應(yīng)邊,②OB與QD邊是對(duì)應(yīng)邊兩種情況,根據(jù)相似三角形對(duì)應(yīng)邊成比例列式計(jì)算求出QD的長(zhǎng)度即可.
試題解析:(1)∵,
∴當(dāng)y=0時(shí),2x2-2=0,x=±1,
∴點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)B的坐標(biāo)為(1,0),AB=2,
又當(dāng)x=0時(shí),y=-2,
∴點(diǎn)C的坐標(biāo)為(0,-2),OC=2,
AB•OC×2×2=2;
(2)將y=6代入,
,解得x=±2,
∴點(diǎn)M的坐標(biāo)為(-2,6),點(diǎn)N的坐標(biāo)為(2,6),MN=4.
∵平行四邊形的面積為8,
∴MN邊上的高為:8÷4=2,
∴P點(diǎn)縱坐標(biāo)為6±2.
①當(dāng)P點(diǎn)縱坐標(biāo)為6+2=8時(shí),,解得
∴點(diǎn)P的坐標(biāo)為(,8)或(,8);
②當(dāng)P點(diǎn)縱坐標(biāo)為6-2=4時(shí),,解得,
∴點(diǎn)P的坐標(biāo)為(,4)或(,4);
(3)∵點(diǎn)B的坐標(biāo)為(1,0),點(diǎn)C的坐標(biāo)為(0,-2),
∴OB=1,OC=2.
∵∠QDB=∠BOC=90°,
∴以Q,D,B為頂點(diǎn)的三角形和以B,C,O為頂點(diǎn)的三角形相似時(shí),分兩種情況:

①OB與BD邊是對(duì)應(yīng)邊時(shí),△OBC∽△DBQ,
,即,解得DQ=2(m-1)=2m-2,
②OB與QD邊是對(duì)應(yīng)邊時(shí),△OBC∽△DQB,
,即,解得
綜上所述,線段QD的長(zhǎng)為2m-2或
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=x2+bx+c經(jīng)過(2,-1)和(4,3)兩點(diǎn).
(1)求出這個(gè)拋物線的解析式;
(2)將該拋物線向右平移1個(gè)單位,再向下平移3個(gè)單位,得到的新拋物線解析式為             .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一場(chǎng)籃球賽中,小明跳起投籃,已知球出手時(shí)離地面高米,與籃圈中心的水平距離為8米,當(dāng)球出手后水平距離為4米時(shí)到達(dá)最大高度4米,若籃球運(yùn)行的軌跡為拋物線,籃圈中心距離地面3米.

(1)建立如圖的平面直角坐標(biāo)系,求拋物線的解析式;
(2)問此球能否投中?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線).
(1)求拋物線與軸的交點(diǎn)坐標(biāo);
(2)若拋物線與軸的兩個(gè)交點(diǎn)之間的距離為2,求的值;
(3)若一次函數(shù)的圖象與拋物線始終只有一個(gè)公共點(diǎn),求一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

矩形OABC在平面直角坐標(biāo)系中的位置如圖所示,A、C兩點(diǎn)的坐標(biāo)分別為A(6,0)、C(0,3),直線與BC邊相交于點(diǎn)D.

(1)求點(diǎn)D的坐標(biāo);
(2)若拋物線經(jīng)過A、D兩點(diǎn),試確定此拋物線的解析式;
(3)設(shè)(2)中的拋物線的對(duì)稱軸與直線AD交于點(diǎn)M,點(diǎn)P為對(duì)稱軸上一動(dòng)點(diǎn),以P、A、M為頂點(diǎn)的三角形與△ABD相似,求符合條件的所有點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,將拋物線C1:y=x2+3先向右平移1個(gè)單位,再向下平移7個(gè)單位得到拋物線C2。C2的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè))。

(1)求拋物線C2的解析式;
(2)若拋物線C2的對(duì)稱軸與x軸交于點(diǎn)C,與拋物線C2交于點(diǎn)D,與拋物線C1交于點(diǎn)E,連結(jié)AD、DB、BE、EA,請(qǐng)證明四邊形ADBE是菱形,并計(jì)算它的面積;
(3)若點(diǎn)F為對(duì)稱軸DE上任意一點(diǎn),在拋物線C2上是否存在這樣的點(diǎn)G,使以O(shè)、B、F、G四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,如果存在,請(qǐng)求出點(diǎn)G的坐標(biāo),如果不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y=2(x﹣3)2+1的頂點(diǎn)坐標(biāo)是( 。
A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將拋物線y=3x2的圖象先向上平移3個(gè)單位,再向右平移4個(gè)單位所得的解析式為(     )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平面直角坐標(biāo)系中,點(diǎn)A是拋物線與y軸的交點(diǎn),點(diǎn)B是這條拋物線上的另一點(diǎn),且AB∥x軸,則以AB為邊的等邊三角形ABC的周長(zhǎng)為          .

查看答案和解析>>

同步練習(xí)冊(cè)答案