【題目】1 將一副三角板中的兩塊直角三角尺的直角頂點(diǎn)O按如圖方式疊放在一起, AOB=DOC=90°.

①如圖(1),若OD是∠AOB的平分線時(shí),求∠BOD和∠AOC的度數(shù).

②如圖(2),若OD不是∠AOB的平分線,試猜想∠AOC與∠BOD的數(shù)量關(guān)系,并說明理由.

2)如圖(3),如果兩個(gè)角∠AOB = DOC= m°(0< m <90),直接寫出∠AOC與∠BOD的數(shù)量關(guān)系.

【答案】(1)①45°;135°;②∠AOC+BOD=180°,理由見解析;(2)∠AOC+BOD=2 m° .

【解析】

1)先根據(jù)角平分線的定義求出∠BOD,再求出∠BOC,然后根據(jù)∠AOC=∠AOB+∠BOC計(jì)算即可;

2)根據(jù)∠BOC=∠DOC-∠BOD,∠AOC=∠AOB+∠BOC,整理即可得出答案;

3)與(2)的步驟類似求解即可.

: (1) ①因?yàn)?/span>∠AOB=90°, OD平分∠AOB

所以.

因?yàn)?/span>∠DOC=90° , ∠BOD=45°,

所以∠BOC=∠DOC-∠BOD=90°-45°=45°.

因?yàn)?/span>∠AOC=∠AOB+∠BOC

所以∠AOC=90°+45°=135°;

數(shù)量關(guān)系: ∠AOC+∠BOD=180°,

理由:∵∠BOC=∠DOC-∠BOD= 90°-∠BOD,

∠AOC=∠AOB+∠BOC,

∴∠AOC =90°+90°-∠BOD,

∴∠AOC+∠BOD=180° ;

(2) 關(guān)系: ∠AOC+∠BOD=2 m°.

理由:∵∠BOC=∠DOC-∠BOD= m°-∠BOD,

∠AOC=∠AOB+∠BOC,

∴∠AOC =m°+m°-∠BOD

∴∠AOC+∠BOD=2m° ;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,已知Aab),且a.b滿足,

1)求A點(diǎn)的坐標(biāo)及線段OA的長度;(2)點(diǎn)Px軸正半軸上一點(diǎn),且△AOP是等腰三角形,求P點(diǎn)的坐標(biāo);

3)如圖2,若B(1,0),C0,-3),試確定∠ACO+BCO的值是否發(fā)生變化,若不變,求其值;若變化,請(qǐng)求出變化范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2bxc(a≠0)x軸交于點(diǎn)A(20),B(1,0),直線x=-0.5與此拋物線交于點(diǎn)C,與x軸交于點(diǎn)M,在直線上取點(diǎn)D,使MDMC,連接AC,BC,AD,BD,某同學(xué)根據(jù)圖象寫出下列結(jié)論:①ab0;②當(dāng)-2<x<1時(shí),y>0;③四邊形ACBD是菱形;④9a3bc>0,你認(rèn)為其中正確的是( )

A. ②③④B. ①②④C. ①③④D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時(shí)出發(fā),設(shè)慢車行駛的時(shí)間為xh),兩車之間的距離為ykm),圖中的折線表示yx之間的函數(shù)關(guān)系,根據(jù)圖像回答以下問題:

1)請(qǐng)?jiān)趫D中的( )內(nèi)填上正確的值,并寫出兩車的速度和.

2)求線段BC所表示的yx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

3)請(qǐng)直接寫出兩車之間的距離不超過15km的時(shí)間范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在2016年巴西里約奧運(yùn)會(huì)上,中國女排克服重重困難,憑借頑強(qiáng)的毅力和超強(qiáng)的實(shí)力先后戰(zhàn)勝了實(shí)力同樣超強(qiáng)的巴西隊(duì),荷蘭隊(duì)和塞爾維亞隊(duì),獲得了奧運(yùn)冠軍,為祖國和人民爭了光.

如圖,已知女排球場的長度OD為18米,位于球場中線處的球網(wǎng)AB的高度為2.24米,一隊(duì)員站在點(diǎn)O處發(fā)球,排球從點(diǎn)O的正上方2米的C點(diǎn)向正前方飛去,排球的飛行路線是拋物線的一部分,當(dāng)排球運(yùn)行至離點(diǎn)O的水平距離OE為6米時(shí),到達(dá)最高點(diǎn)F,以O為原點(diǎn)建立如圖所示的平面直角坐標(biāo)系.

(1)當(dāng)排球運(yùn)行的最大高度為2.8米時(shí),求排球飛行的高度y(單位:米)與水平距離x(單位:米)之間的函數(shù)關(guān)系式.

(2)在(1)的條件下,這次所發(fā)的球能夠過網(wǎng)嗎?如果能夠過網(wǎng),是否會(huì)出界?請(qǐng)說明理由.

(3)喜歡打排球的李明同學(xué)經(jīng)研究后發(fā)現(xiàn),發(fā)球要想過網(wǎng),球運(yùn)行的最大高度h(米)應(yīng)滿足h>2.32,但是他不知道如何確定h的取值范圍,使排球不會(huì)出界(排球壓線屬于沒出界),請(qǐng)你幫忙解決并指出使球既能過網(wǎng)又不會(huì)出界的h的取值范圍 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,M、N分別是AD,BC的中點(diǎn),AND=90°,連接CMDN于點(diǎn)O

1)求證:ABN≌△CDM;

2)過點(diǎn)CCEMN于點(diǎn)E,交DN于點(diǎn)P,若PE=1,1=2,求AN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形AOBC的頂點(diǎn)C的坐標(biāo)是(2,4),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線段AO向終點(diǎn)O運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿線段BC向終點(diǎn)C運(yùn)動(dòng).點(diǎn)P、Q的運(yùn)動(dòng)速度均為1個(gè)單位,運(yùn)動(dòng)時(shí)間為t秒.過點(diǎn)PPEAOAB于點(diǎn)E

1)求直線AB的解析式;

2)設(shè)PEQ的面積為S,求St時(shí)間的函數(shù)關(guān)系,并指出自變量t的取值范圍;

3)在動(dòng)點(diǎn)PQ運(yùn)動(dòng)的過程中,點(diǎn)H是矩形AOBC內(nèi)(包括邊界)一點(diǎn),且以B、QE、H為頂點(diǎn)的四邊形是菱形,直接寫出t值和與其對(duì)應(yīng)的點(diǎn)H的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在紙面所在的平面內(nèi),一只電子螞蟻從數(shù)軸上表示原點(diǎn)的位置O點(diǎn)出發(fā),按向上、向右、向下、向右的方向依次不斷移動(dòng),每次移動(dòng)1個(gè)單位,其移動(dòng)路線如圖所示,第1次移動(dòng)到,第2次移動(dòng)到,第3次移動(dòng)到……,第n次移動(dòng)到,則O的面積是(

A.504B.C.D.505

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在直線道路上同起點(diǎn)、同終點(diǎn)、同方向,分別以不同的速度勻速跑1500米,先到終點(diǎn)的人原地休息,已知甲先出發(fā)30秒后,乙才出發(fā),甲在跑步的整個(gè)過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時(shí)間x(秒)之間的關(guān)系如圖所示,則乙到終點(diǎn)時(shí),甲距終點(diǎn)的距離是( )米

A. 150 B. 175 C. 180 D. 225

查看答案和解析>>

同步練習(xí)冊(cè)答案