(2004•云南)某學習小組在探索“各內角都相等的圓內接多邊形是否為正多邊形”時,進行如下討論:
甲同學:這種多邊形不一定是正多邊形,如圓內接矩形.
乙同學:我發(fā)現(xiàn)邊數(shù)是6時,它也不一定是正多邊形,如圖1,△ABC是正三角形,,證明六邊形ADBECF的各內角相等,但它未必是正六邊形.
丙同學:我能證明,邊數(shù)是5時,它是正多邊形,我想…,邊數(shù)是7時,它可能也是正多邊形.
(1)請你說明乙同學構造的六邊形各內角相等;
(2)請你證明,各內角都相等的圓內接七邊形ABCDEFG(如圖2)是正七邊形;(不必寫已知,求證)
(3)根據(jù)以上探索過程,提出你的猜想.(不必證明)

【答案】分析:要證明一個圓內接多邊形是正多邊形,只要證明多邊形的頂點是圓的等分點就可以了.
解答:解:(1)由圖知∠AFC對,
,而∠DAF對的,
∴∠AFC=∠DAF.同理可證,其余各角都等于∠AFC,
故圖(1)中六邊形各角相等;

(2)∵∠A對,∠B對
又∵∠A=∠B,
,
,
同理,

(3)猜想:當邊數(shù)是奇數(shù)時(或當邊數(shù)是3,5,7,9,時),
各內角相等的圓內接多邊形是正多邊形.
點評:本題主要考查了連接圓的等分點所得到的多邊形是正多邊形這一結論.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《圓》(14)(解析版) 題型:解答題

(2004•云南)某學習小組在探索“各內角都相等的圓內接多邊形是否為正多邊形”時,進行如下討論:
甲同學:這種多邊形不一定是正多邊形,如圓內接矩形.
乙同學:我發(fā)現(xiàn)邊數(shù)是6時,它也不一定是正多邊形,如圖1,△ABC是正三角形,,證明六邊形ADBECF的各內角相等,但它未必是正六邊形.
丙同學:我能證明,邊數(shù)是5時,它是正多邊形,我想…,邊數(shù)是7時,它可能也是正多邊形.
(1)請你說明乙同學構造的六邊形各內角相等;
(2)請你證明,各內角都相等的圓內接七邊形ABCDEFG(如圖2)是正七邊形;(不必寫已知,求證)
(3)根據(jù)以上探索過程,提出你的猜想.(不必證明)

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《數(shù)據(jù)分析》(04)(解析版) 題型:解答題

(2004•云南)某公司銷售部有營銷人員15人,銷售部為了制定某種商品的月銷售定額,統(tǒng)計了這15人某月的銷售量如下:
每人銷售件數(shù)1800510250210150120
人數(shù)113532
(1)求這15位營銷人員該月銷售量的平均數(shù)、中位數(shù)和眾數(shù);
(2)假設銷售負責人把每位營銷員的月銷售額定為320件,你認為是否合理,為什么?如不合理,請你制定一個較合理的銷售定額,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年安徽省中考數(shù)學試卷(解析版) 題型:解答題

(2004•云南)某學習小組在探索“各內角都相等的圓內接多邊形是否為正多邊形”時,進行如下討論:
甲同學:這種多邊形不一定是正多邊形,如圓內接矩形.
乙同學:我發(fā)現(xiàn)邊數(shù)是6時,它也不一定是正多邊形,如圖1,△ABC是正三角形,,證明六邊形ADBECF的各內角相等,但它未必是正六邊形.
丙同學:我能證明,邊數(shù)是5時,它是正多邊形,我想…,邊數(shù)是7時,它可能也是正多邊形.
(1)請你說明乙同學構造的六邊形各內角相等;
(2)請你證明,各內角都相等的圓內接七邊形ABCDEFG(如圖2)是正七邊形;(不必寫已知,求證)
(3)根據(jù)以上探索過程,提出你的猜想.(不必證明)

查看答案和解析>>

科目:初中數(shù)學 來源:2002年安徽省中考數(shù)學試卷(解析版) 題型:解答題

(2004•云南)某公司銷售部有營銷人員15人,銷售部為了制定某種商品的月銷售定額,統(tǒng)計了這15人某月的銷售量如下:
每人銷售件數(shù)1800510250210150120
人數(shù)113532
(1)求這15位營銷人員該月銷售量的平均數(shù)、中位數(shù)和眾數(shù);
(2)假設銷售負責人把每位營銷員的月銷售額定為320件,你認為是否合理,為什么?如不合理,請你制定一個較合理的銷售定額,并說明理由.

查看答案和解析>>

同步練習冊答案