如圖所示,在△ABC中,D、E分別是AB、AC上的點(diǎn),DE∥BC,如圖①,然后將△ADE繞A點(diǎn)順時(shí)針旋轉(zhuǎn)一定角度,得到圖②,然后將BD、CE分別延長(zhǎng)至M、N,使DM=
1
2
BD,EN=
1
2
CE,得到圖③,請(qǐng)解答下列問(wèn)題:
精英家教網(wǎng)
(1)若AB=AC,請(qǐng)?zhí)骄肯铝袛?shù)量關(guān)系:
①在圖②中,BD與CE的數(shù)量關(guān)系是
 
;
②在圖③中,猜想AM與AN的數(shù)量關(guān)系、∠MAN與∠BAC的數(shù)量關(guān)系,并證明你的猜想;
(2)若AB=k•AC(k>1),按上述操作方法,得到圖④,請(qǐng)繼續(xù)探究:AM與AN的數(shù)量關(guān)系、∠MAN與∠BAC的數(shù)量關(guān)系,直接寫(xiě)出你的猜想,不必證明.
分析:(1)①根據(jù)題意和旋轉(zhuǎn)的性質(zhì)可知△AEC≌△ADB,所以BD=CE;
②根據(jù)題意可知∠CAE=BAD,AB=AC,AD=AE,所以得到△BAD≌△CAE,在△ABM和△ACN中,DM=
1
2
BD,EN=
1
2
CE,可證△ABM≌△ACN,所以AM=AN,即∠MAN=∠BAC.
(2)直接類比(1)中結(jié)果可知AM=k•AN,∠MAN=∠BAC.
解答:精英家教網(wǎng)解:(1)①BD=CE;
②AM=AN,∠MAN=∠BAC,
∵∠DAE=∠BAC,
∴∠CAE=∠BAD,
在△BAD和△CAE中

AE=AD
∠CAE=∠BAD
AC=AB
∴△CAE≌△BAD(SAS),
∴∠ACE=∠ABD,
∵DM=
1
2
BD,EN=
1
2
CE,
∴BM=CN,
在△ABM和△ACN中,
BM=CN
∠ACN=∠ABM
AB=AC

∴△ABM≌△ACN(SAS),
∴AM=AN,
∴∠BAM=∠CAN,即∠MAN=∠BAC;

(2)AM=k•AN,
∠MAN=∠BAC.
點(diǎn)評(píng):本題考查三角形全等的判定方法和性質(zhì).判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定兩個(gè)三角形全等,先根據(jù)已知條件或求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.本題還要會(huì)根據(jù)所求的結(jié)論運(yùn)用類比的方法求得同類題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于點(diǎn)F,求∠BFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,D是AC的中點(diǎn),E是線段BC延長(zhǎng)線上一點(diǎn),過(guò)點(diǎn)A作AF∥BC交ED的延長(zhǎng)線于點(diǎn)F,連接AE,CF.
求證:(1)四邊形AFCE是平行四邊形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、如圖所示,在△ABC中,DM、EN分別垂直平分AB和AC,交BC于D、E,若∠DAE=50°,則∠BAC=
115
度,若△ADE的周長(zhǎng)為19cm,則BC=
19
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,AB=AC,DE是邊AB的垂直平分線,交AB于E,交AC于D,若△BCD的周長(zhǎng)為18cm,△ABC的周長(zhǎng)為30cm,那么BE的長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P點(diǎn)在BC上從B點(diǎn)向C點(diǎn)運(yùn)動(dòng)(不包括點(diǎn)C),點(diǎn)P的運(yùn)動(dòng)速度為2cm∕s;Q點(diǎn)在AC上從C點(diǎn)向點(diǎn)A運(yùn)動(dòng)(不包括點(diǎn)A),運(yùn)動(dòng)速度為5cm∕s,若點(diǎn)P、Q分別從B、C同時(shí)運(yùn)動(dòng),請(qǐng)解答下面的問(wèn)題,并寫(xiě)出主要過(guò)程.
(1)經(jīng)過(guò)多長(zhǎng)時(shí)間后,P、Q兩點(diǎn)的距離為5
2
cm?
(2)經(jīng)過(guò)多長(zhǎng)時(shí)間后,△PCQ面積為15cm2?

查看答案和解析>>

同步練習(xí)冊(cè)答案