某商品的進價為每件20元,售價為每件30元,每個月可賣出180件;如果每件商品的售價每上漲1元,則每個月就會少賣出10件,但每件售價不能高于35元,設(shè)每件商品的售價上漲x元(x為整數(shù)),每個月的銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(2)每件商品的售價為多少元時,每個月可獲得最大利潤?最大利潤是多少?
(3)每件商品的售價定為多少元時,每個月的利潤恰好是1920元?
【答案】
分析:(1)銷售利潤=每件商品的利潤×(180-10×上漲的錢數(shù)),根據(jù)每件售價不能高于35元,可得自變量的取值;
(2)利用公式法結(jié)合(1)得到的函數(shù)解析式可得二次函數(shù)的最值,結(jié)合實際意義,求得整數(shù)解即可;
(3)讓(1)中的y=1920求得合適的x的解即可.
解答:解:(1)y=(30-20+x)(180-10x)=-10x
2+80x+1800(0≤x≤5,且x為整數(shù));
(2)由(1)知,y=-10x
2+80x+1800(0≤x≤5,且x為整數(shù)).
∵-10<0,
∴當x=
=4時,y
最大=1960元;
∴每件商品的售價為34元.
答:每件商品的售價為34元時,商品的利潤最大,為1960元;
(3)1920=-10x
2+80x+1800
x
2-8x+12=0,
(x-2)(x-6)=0,
解得x=2或x=6,
∵0≤x≤5,
∴x=2,
∴售價為32元時,利潤為1920元.
點評:考查二次函數(shù)的應(yīng)用;得到月銷售量是解決本題的突破點;注意結(jié)合自變量的取值求得相應(yīng)的售價.