【題目】如圖,正方形ABCD的邊長為2,以BC為邊向正方形內(nèi)作等邊△BCE,連接AE、DE.

(1)請直接寫出∠AEB的度數(shù),∠AEB=   

(2)將△AED沿直線AD向上翻折,得△AFD.求證:四邊形AEDF是菱形;

(3)連接EF,交AD于點 O,試求EF的長?

【答案】(1)75°;(2)證明見解析;(3)

【解析】

試題(1)由正方形和等邊三角形的性質(zhì)得出ABE=30°,AB=BE,由等腰三角形的性質(zhì)和三角形內(nèi)角和定理即可求出AEB的度數(shù);

(2)先判斷出ABE≌△DCE,得到AE=ED,再由翻折的性質(zhì)即可得出結(jié)論;

(3)先由等邊三角形的性質(zhì)求出EH,進而得出OE,借助(2)的結(jié)論即可求出EF.

試題解析:(1)四邊形ABCD是正方形,

∴∠ABC=BCD=90°,AB=BC=CD

∵△EBC是等邊三角形,

BE=BC,EBC=60°,

∴∠ABE=90°-60°=30°,AB=BE,

∴∠AEB=BAE=(180°-30°)=75°;

(2)四邊形ABCD為正方形,

∴∠ABC=BCD=90°,AB=CD,

∵△BCE為等邊三角形,

∴∠BCE=EBC=60°,BE=EC

∴∠ABE=DCE=90°-60°=30°,

∴△ABE≌△DCE,

AE=ED,

∵△AED沿著AD翻折為AFD,

AE=ED=AF=FD,

四邊形AEDF是菱形;

(3)如圖,

由翻折知,AE=AF,FAO=EAO,

EFAD,過點EEHBCH,

在等邊三角形BCE中,BC=2,

EH=BC=

EO=OH-EH=AB-EH=2-,

EF=2EO=2(2-)=4-2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A(2,3)和點B(0,2),點A在反比例函數(shù)y= 的圖象上.作射線AB,再將射線AB繞點A按逆時針方向旋轉(zhuǎn)45°,交反比例函數(shù)圖象于點C,則點C的坐標為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘海輪位于燈塔P的北偏東方向55°,距離燈塔為2海里的點A.如果海輪沿正南方向航行到燈塔的正東位置,海輪航行的距離AB長是(  )

A. 2海里 B. 2sin 55°海里

C. 2cos 55°海里 D. 2tan 55°海里

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC,∠ACB=90°,BC=3,AC=4,小紅按如下步驟作圖:

分別以A、C為圓心,以大于AC的長為半徑在AC兩邊作弧,交于兩點M、N;

連接MN,分別交AB、AC于點D、O;

CCE∥ABMN于點E,連接AE、CD.

則四邊形ADCE的周長為( 。

A. 10 B. 20 C. 12 D. 24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明的手機沒電了,現(xiàn)有一個只含A,B,C,D四個同型號插座的插線板(如圖,假設(shè)每個插座都適合所有的充電插頭,且被選中的可能性相同),請計算:

(1)若小明隨機選擇一個插座插入,則插入A的概率為   ;

(2)現(xiàn)小明對手機和學習機兩種電器充電,請用列表或畫樹狀圖的方法表示出兩個插頭插入插座的所有可能情況,并計算兩個插頭插在相鄰插座的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠BCD是鈍角,ABAD,BD平分∠ABC.CD3BD2,sinDBC,求對角線AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一張面積為100cm2的正方形紙片,其正投影的面積可能是100cm2嗎?可能是80cm2嗎?可能是120cm2嗎?試確定這張正方形紙片的正投影面積的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊中,,射線,點從點出發(fā)沿射線的速度運動,同時點從點出發(fā)沿射線的速度運動,設(shè)點運動的時間為.

1)當點在線段上運動時,_________,當點在線段的延長線上運動時,_________(請用含的式子表示);

2)在整個運動過程中,當以點,為頂點的四邊形是平行四邊形時,求的值;

3)求當_________時,,兩點間的距離最小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于,兩點.

試確定上述反比例函數(shù)和一次函數(shù)的表達式;

OB,在x軸上取點C,使,并求的面積;

直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.

查看答案和解析>>

同步練習冊答案