【題目】縉云山是國家級自然風景名勝區(qū),上周周末,小明和媽媽到縉云山游玩,登上了香爐峰觀景塔,從觀景塔底中心處水平向前走米到點處,再沿著坡度為的斜坡走一段距離到達點,此時回望觀景塔,更顯氣勢宏偉,在點觀察到觀景塔頂端的仰角為再往前沿水平方向走米到處,觀察到觀景塔頂端的仰角是,則觀景塔的高度為( )(tan22°≈0.4

A.B.C.D.

【答案】A

【解析】

DA的延長線于N,延長CBDEM,則四邊形DMBN是矩形,根據(jù)AB的坡度,設表示出 中, 中, 根據(jù) 列出式子,求出的值,即可求解.

如圖,作DA的延長線于N,延長CBDEM,則四邊形DMBN是矩形,


可以假設
則,
中,


中,

解得:

答:觀景塔的高度DE21.
故選A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知直線y=-x+4與雙曲線y=x0)只有一個交點,將直線y=-x+4向上平移1個單位后與雙曲線y=x0)相交于A,B兩點,如圖,求A,B兩點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=mx2+2mx+m-1和直線y=mx+m-1,且m≠0

1)求拋物線的頂點坐標;

2)試說明拋物線與直線有兩個交點;

3)已知點Tt0),且-1≤t≤1,過點Tx軸的垂線,與拋物線交于點P,與直線交于點Q,當0m≤3時,求線段PQ長的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以AB為直徑的⊙O分別與BC,AC交于點DE,過點DDFAC,垂足為F

1)求證:DF為⊙O的切線;

2)若 ,∠CDF22.5°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知梯形ABCD中,AD//BC ,∠ABC=90°,BC=2AB=8,對角線AC平分∠BCD,過點DDEAC,垂足為點E,交邊AB的延長線于點F,聯(lián)結CF

1)求腰DC的長;

2)求∠BCF的余弦值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明研究一函數(shù)的性質,下表是該函數(shù)的幾組對應值:

在平面直角坐標系中,描出以上表格中的各點,根據(jù)描出的點,畫出該函數(shù)圖像

根據(jù)所畫函數(shù)圖像,寫出該函數(shù)的一條性質: .

根據(jù)圖像直接寫出該函數(shù)的解析式及自變量的取值范圍: ;

若一次函數(shù)與該函數(shù)圖像有三個交點,則的范圍是 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在△ABC中,AB=AC. (1)若∠A=36,在△ABC中畫一條線段,能得到2個等腰三角形(不包括△ABC),這2個等腰三角形的頂角的度數(shù)分別是_____;(2)若∠A36, 當∠A=_____時,在等腰△ABC中畫一條線段,能得到2個等腰三角形(不包括△ABC).(寫出兩個答案即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某乒乓球館普通票價20元/張,暑假為了促銷,新推出兩種優(yōu)惠卡:①金卡售價600元/張,每次憑卡不再收費;②銀卡售價150元/張,每次憑卡另收10元;暑期普通票正常出售,兩種優(yōu)惠卡僅限暑期使用,不限次數(shù).設打乒乓x次時,所需總費用為y元.

1)分別寫出選擇銀卡、普通票消費時,yx之間的函數(shù)關系式;

2)在同一個坐標系中,若三種消費方式對應的函數(shù)圖像如圖所示,請根據(jù)函數(shù)圖像,寫出選擇哪種消費方式更合算.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解本校九年級學生期末數(shù)學考試情況,小亮在九年級隨機抽取了一部分學生的期末數(shù)學成績?yōu)闃颖,分為A(100﹣90分)、B(89~80分)、C(79~60分)、D(59~0分)四個等級進行統(tǒng)計,并將統(tǒng)計結果繪制成如下統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答以下問題:

(1)這次隨機抽取的學生共有多少人?

(2)請補全條形統(tǒng)計圖;

(3)這個學校九年級共有學生1200人,若分數(shù)為80分(含80分)以上為優(yōu)秀,請估計這次九年級學生期末數(shù)學考試成績?yōu)閮?yōu)秀的學生人數(shù)大約有多少?

查看答案和解析>>

同步練習冊答案