【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連結(jié)AC,過上一點E作EG∥AC交CD的延長線于點G,連結(jié)AE交CD于點F,且EG=FG,連結(jié)CE.
(1)求證:△ECF∽△GCE;
(2)求證:EG是⊙O的切線;
(3)延長AB交GE的延長線于點M,若tanG=,AH=,求EM的值.
【答案】(1)證明見解析;(2)證明見解析;(3).
【解析】
試題分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可證明;
(2)欲證明EG是⊙O的切線只要證明EG⊥OE即可;
(3)連接OC.設(shè)⊙O的半徑為r.在Rt△OCH中,利用勾股定理求出r,證明△AHC∽△MEO,可得,由此即可解決問題;
試題解析:(1)證明:如圖1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.
(2)證明:如圖2中,連接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切線.
(3)解:如圖3中,連接OC.設(shè)⊙O的半徑為r.
在Rt△AHC中,tan∠ACH=tan∠G==,∵AH=,∴HC=,在Rt△HOC中,∵OC=r,OH=r﹣,HC=,∴,∴r=,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴,∴,∴EM=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某住宅小區(qū)在施工過程中留下了一塊空地(圖中的四邊形),經(jīng)測量,在四邊形中,,,,,.
(1)若連接,則是直角三角形嗎?為什么?
(2)小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米150元,試問鋪滿這塊空地共需花費多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛貨車從超市出發(fā),向東走了1千米,到達小明家,繼續(xù)向東走了3千米到達小兵家,然后西走了10千米,到達小華家,最后又向東走了6千米結(jié)束行程.
(1)如果以超市為原點,以向東為正方向,用1個單位長度表示1千米,請你在下面的數(shù)軸上表示出小明家、小兵家和小華家的具體位置.
(2)請你通過計算說明貨車最后回到什么地方?
(3)如果貨車行駛1千米的用油量為0.25升,請你計算貨車從出發(fā)到結(jié)束行程共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個3×3的方格中填寫了9個數(shù)字,使得每行、每列、每條對角線上的三個數(shù)之和相等,得到的3×3的方格稱為一個三階幻方.
(1)在圖1中空格處填上合適的數(shù)字,使它構(gòu)成一個三階幻方;
(2)如圖2的方格中填寫了一些數(shù)和字母,當(dāng)x+y的值為多少時,它能構(gòu)成一個三階幻方.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了豐富學(xué)生的體育生活,學(xué)校準備購進一些籃球和足球,已知用900元購買籃球的個數(shù)比購買足球的個數(shù)少1個,足球的單價為籃球單價的0.9倍.
(1)求籃球、足球的單價分別為多少元?
(2)如果計劃用5000元購買籃球、足球共52個,那么至少要購買多少個足球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016浙江省衢州市)如圖,正方形ABCD的頂點A,B在函數(shù)(x>0)的圖象上,點C,D分別在x軸,y軸的正半軸上,當(dāng)k的值改變時,正方形ABCD的大小也隨之改變.
(1)當(dāng)k=2時,正方形A′B′C′D′的邊長等于____.
(2)當(dāng)變化的正方形ABCD與(1)中的正方形A′B′C′D′有重疊部分時,k的取值范圍是______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,點是的中點,點是射線上一點,于點,且,連接,作于點,交直線于點.
(1)如圖(1),當(dāng)點在線段上時,判斷和的數(shù)量關(guān)系,并加以證明;
(2)如圖(2),當(dāng)點在線段的延長線上時,問題(1)中的結(jié)論是否依然成立?如果成立,請求出當(dāng)和面積相等時,點與點之間的距離;如果不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣2x2+8x﹣6與x軸交于點A、B,把拋物線在x軸及其上方的部分記作C1,將C1向右平移得C2,C2與x軸交于點B,D.若直線y=x+m與C1、C2共有3個不同的交點,則m的取值范圍是( 。
A. ﹣2<m< B. ﹣3<m<﹣ C. ﹣3<m<﹣2 D. ﹣3<m<﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“元旦”期間,平價商場對該商場商品進行如下的優(yōu)惠促銷活動:
打折前一次性購物總金額 | 優(yōu)惠措施 |
小于等于 400 元 | 不優(yōu)惠 |
超過 400 元,但不超過 600元 | 按售價打九折 |
超過 600 元 | 其中 600 元部分八折優(yōu)惠,超過 600 元的部分打六折優(yōu)惠 |
按上述優(yōu)惠條件,若小華一次性購買售價為 80 元/件的商品 n 件時,實際付款 504 元, 則 n=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com