【題目】我國(guó)宋朝數(shù)學(xué)家楊輝在他的著作《詳解九章算法》中提出如圖,此表揭示了(a+b)n(n為非負(fù)整數(shù))展開(kāi)式的各項(xiàng)系數(shù)的規(guī)律,例如:(a+b)0=1,它只有一項(xiàng),系數(shù)為1;(a+b)1=a+b,它有兩項(xiàng),系數(shù)分別為1,1;(a+b)2=a2+2ab+b2,它有三項(xiàng),系數(shù)分別為1,2,1;(a+b)3=a3+3a2b+3ab2+b3,它有四項(xiàng),系數(shù)分別為1,3,3,1;…;根據(jù)以上規(guī)律,(a+b)5展開(kāi)式共有六項(xiàng),系數(shù)分別為______,拓展應(yīng)用:(a﹣b)4=_______.
【答案】1,5,10,10,5,1 a4﹣4a3b+6a2b2﹣4ab3+b4
【解析】
經(jīng)過(guò)觀察發(fā)現(xiàn),這些數(shù)字組成的三角形是等腰三角形,兩腰上的數(shù)都是1,從第3行開(kāi)始,中間的每一個(gè)數(shù)都等于它肩上兩個(gè)數(shù)字之和,展開(kāi)式的項(xiàng)數(shù)比它的指數(shù)多1.根據(jù)上面觀察的規(guī)律很容易解答問(wèn)題.
(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.
(a﹣b)4=a4﹣4a3b+6a2b2﹣4ab3+b4.
故答案為:1、5、10、10、5、1,a4﹣4a3b+6a2b2﹣4ab3+b4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,銳角的兩條高、相交于點(diǎn),且.
(1)證明:.
(2)判斷點(diǎn)是否在的角平分線上,并說(shuō)明理由.
(3)連接,與是否平行?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知OA,OB是⊙O的半徑,且OA⊥OB,垂足為O,P是射線OA上的一點(diǎn)(點(diǎn)A除外),直線BP交⊙O于點(diǎn)Q,過(guò)Q作⊙O的切線交射線OA于點(diǎn)E.
(1)如圖①,點(diǎn)P在線段OA上,若∠OBQ=15°,求∠AQE的大;
(2)如圖②,點(diǎn)P在OA的延長(zhǎng)線上,若∠OBQ=65°,求∠AQE的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C,D是⊙O上的點(diǎn),且OC∥BD,AD分別與BC,OC相交于點(diǎn)E,F(xiàn),則下列結(jié)論:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的____(把你認(rèn)為正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)探究新知:如圖1,已知△ABC與△ABD的面積相等,試判斷AB與CD的位置關(guān)系,并說(shuō)明理由.
(2)結(jié)論應(yīng)用:① 如圖2,點(diǎn)M,N在反比例函數(shù)(k>0)的圖象上,過(guò)點(diǎn)M作ME⊥y軸,過(guò)點(diǎn)N作NF⊥x軸,垂足分別為E,F(xiàn).試證明:MN∥EF.
② 若①中的其他條件不變,只改變點(diǎn)M,N的位置如圖3所示,請(qǐng)判斷 MN與EF是否平行?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某甜品店用,兩種原料制作成甲、乙兩款甜品進(jìn)行銷售,制作每份甜品的原料所需用量如下表所示.該店制作甲款甜品份,乙款甜品份,共用去原料2000克.
原料 款式 | 原料 (克) | 原料 (克) |
甲款甜品 | 30 | 15 |
乙款甜品 | 10 | 20 |
(1)求關(guān)于的函數(shù)表達(dá)式;
(2)已知每份甲甜品的利潤(rùn)為5元,每份乙甜品的利潤(rùn)為2元.假設(shè)兩款甜品均能全部賣出.若獲得總利潤(rùn)不少于360元,則至少要用去原料多少克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊中,,將線段沿翻折,得到線段,連結(jié)交于點(diǎn),連結(jié)、以下說(shuō)法:①,②,③,④中,正確的有( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)決定在“五·四藝術(shù)周”為一個(gè)節(jié)目制作A、B兩種道具,共80個(gè). 制作的道具需要甲、乙兩種材料組合而成,現(xiàn)有甲種材料700件,乙種材料500件,已知組裝A、B兩種道具所需的甲、乙兩種材料,如下表所示:
甲種材料(件) | 乙種材料(件) | |
A道具 | 6 | 8 |
B道具 | 10 | 4 |
經(jīng)過(guò)計(jì)算,制作一個(gè)A道具的費(fèi)用為5元,一個(gè)B道具的費(fèi)用為4.5元. 設(shè)組裝A種道具x個(gè),所需總費(fèi)用為y元.
(1)求y與x的函數(shù)關(guān)系式,并求出x的取值范圍;
(2)問(wèn)組裝A種道具多少個(gè)時(shí),所需總費(fèi)用最少,最少費(fèi)用是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com