【題目】如圖,反比例函數(shù)經(jīng)過點(diǎn),則________;若點(diǎn)為該曲線上的一點(diǎn),過點(diǎn)作軸、軸的垂線,分別交直線于點(diǎn)、兩點(diǎn),若直線與軸交于點(diǎn),與軸相交于點(diǎn),則的值為________.
【答案】
【解析】
作CE⊥x軸于E,DF⊥y軸于F,由直線的解析式為y=-x+m,易得A(0,m),B(m,0),得到△OAB等腰直角三角形,則△ADF和△CEB都是等腰直角三角形,設(shè)M的坐標(biāo)為(a,b),則ab=,并且CE=b,DF=a,則AD=DF=a,BC=CE=b,于是得到ADBC=2ab=2.
解:∵反比例函數(shù)y=經(jīng)過點(diǎn)(1,),
∴k=1×=,
作CE⊥x軸于E,DF⊥y軸于F,如圖,
對于y=x+m,
令x=0,則y=m;令y=0,x+m=0,解得x=m,
∴A(0,m),B(m,0),
∴△OAB等腰直角三角形,
∴△ADF和△CEB都是等腰直角三角形,
設(shè)M的坐標(biāo)為(a,b),則ab=,CE=b,DF=a,
∴AD=DF=a,BC=CE=b,
∴ADBC=ab=2ab=2.
故答案為:,2
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是( )
A. 30° B. 60° C. 30°或150° D. 60°或120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列式子中①abc<0;②0<b<-2a;③; ④a+b+c<0成立的個(gè)數(shù)有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD⊥BC于點(diǎn)D,且BD=DC,E是BC延長線上一點(diǎn),且點(diǎn)C在AE的垂直平分線上.有下列結(jié)論:
①AB=AC=CE;②AB+BD=DE;③AD=AE;④BD=DC=CE.
其中,正確的結(jié)論是( 。
A. 只有 B. 只有
C. 只有 D. 只有
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大家看過中央電視臺“購物街”節(jié)目嗎?其中有一個(gè)游戲環(huán)節(jié)是大轉(zhuǎn)輪比賽,轉(zhuǎn)輪上平均分布著5、10、15、20一直到100共20個(gè)數(shù)字.選手依次轉(zhuǎn)動(dòng)轉(zhuǎn)輪,每個(gè)人最多有兩次機(jī)會(huì).選手轉(zhuǎn)動(dòng)的數(shù)字之和最大不超過100者為勝出;若超過100則成績無效,稱為“爆掉”.
(1)某選手第一次轉(zhuǎn)到了數(shù)字5,再轉(zhuǎn)第二次,則他兩次數(shù)字之和為100的可能性有多大?
(2)現(xiàn)在某選手第一次轉(zhuǎn)到了數(shù)字65,若再轉(zhuǎn)第二次了則有可能“爆掉”,請你分析“爆掉”的可能性有多大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,點(diǎn)E、F分別在AB、AD上,∠EFB=2∠AFE=2∠BCE,CD=9,CE=20,則線段AF的長為( ).
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰梯形中,,對角線于點(diǎn),點(diǎn)在軸上,點(diǎn)、在軸上.
若,,求點(diǎn)的坐標(biāo);
若,,求過點(diǎn)的反比例函數(shù)的解析式;
如圖,在上有一點(diǎn),連接,過作交于,交于,在上取,過作交于,交于,當(dāng)在上運(yùn)動(dòng)時(shí),(不與、重合),的值是否發(fā)生變化?若變化,求出變化范圍;若不變,求出其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點(diǎn)、分別是邊、的中點(diǎn),點(diǎn)在邊上,連接、、,則添加下列哪一個(gè)條件后,仍無法判定與全等的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖⊙O是△ABC的外接圓,∠ABC=45°,延長BC于D,連接AD,使得AD∥OC,AB交OC于E.
(1)求證:AD與⊙O相切;
(2)若AE=2,CE=2.求⊙O的半徑和AB的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com