【題目】如圖,船A、B在東西方向的海岸線MN上,均收到已觸礁擱淺的船P的求救信號,已知船P在船A的北偏東60°方向上,在船B的北偏西37°方向上,AP=30海里.
(1)尺規(guī)作圖:過點P作AB所在直線的垂線,垂足為E(要求:保留作圖痕跡,不寫作法);
(2)求船P到海岸線MN的距離(即PE的長);
(3)若船A、船B分別以20海里/時、15海里/時的速度同時出發(fā),勻速直線前往救援,試通過計算判斷哪艘船先到達船P處.(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小華站在河岸上的G點,看見河里有一小船沿垂直于岸邊的方向劃過來.此時,測得小船C的俯角是∠FDC=30°,若小華的眼睛與地面的距離是1.6米,BG=0.7米,BG平行于AC所在的直線,迎水坡i=4:3,坡長AB=8米,點A、B、C、D、F、G在同一平面內(nèi),則此時小船C到岸邊的距離CA的長為 米.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠B=60°,AB=1,延長AD到點E,使DE=AD,延長CD到點F,使DF=CD,連接AC、CE、EF、AF,則下列描述正確的是( 。
A.四邊形ACEF是平行四邊形,它的周長是4
B.四邊形ACEF是矩形,它的周長是2+2
C.四邊形ACEF是平行四邊形,它的周長是4
D.四邊形ACEF是矩形,它的周長是4+4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+2與坐標軸交于A、B、C三點,其中B(4,0)、C(﹣2,0),連接AB、AC,在第一象限內(nèi)的拋物線上有一動點D,過D作DE⊥x軸,垂足為E,交AB于點F.
(1)求此拋物線的解析式;
(2)在DE上作點G,使G點與D點關(guān)于F點對稱,以G為圓心,GD為半徑作圓,當⊙G與其中一條坐標軸相切時,求G點的橫坐標;
(3)過D點作直線DH∥AC交AB于H,當△DHF的面積最大時,在拋物線和直線AB上分別取M、N兩點,并使D、H、M、N四點組成平行四邊形,請你直接寫出符合要求的M、N兩點的橫坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一條直線過點(0,4),且與拋物線y= x2交于A,B兩點,其中點A的橫坐標是﹣2.
(1)求這條直線的函數(shù)關(guān)系式及點B的坐標.
(2)在x軸上是否存在點C,使得△ABC是直角三角形?若存在,求出點C的坐標,若不存在,請說明理由.
(3)過線段AB上一點P,作PM∥x軸,交拋物線于點M,點M在第一象限,點N(0,1),當點M的橫坐標為何值時,MN+3MP的長度最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圖①是某電腦液晶顯示器的側(cè)面圖,顯示屏AO可以繞點O旋轉(zhuǎn)一定的角度.研究表明:顯示屏頂端A與底座B的連線AB與水平線BC垂直時(如圖②),人觀看屏幕最舒適.此時測得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的長度.(結(jié)果精確到1cm)(參考數(shù)據(jù):sin15°≈0.26,cos15°≈0.97,tan15°≈0.27, ≈1.414)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,經(jīng)過點A的雙曲線y= (x>0)同時經(jīng)過點B,且點A在點B的左側(cè),點A的橫坐標為 ,∠AOB=∠OBA=45°,則k的值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com