已知:如圖,等邊△ABC中,AB=1,P是AB邊上一動(dòng)點(diǎn),作PE⊥BC,垂足為E;作EF⊥AC,垂足為F;作FQ⊥AB,垂足為Q.

(1)設(shè)BP=x,AQ=y(tǒng),求y與x之間的函數(shù)關(guān)系式;

(2)當(dāng)點(diǎn)P和點(diǎn)Q重合時(shí),求線段EF的長(zhǎng);

(3)當(dāng)點(diǎn)P和點(diǎn)Q不重合,但線段PE、FQ相交時(shí),求它們與線段EF圍成的三角形周長(zhǎng)的取值范圍.

答案:
解析:

  (1)∵△ABC是等邊三角形,AB=1.

  ∴∠A=∠B=∠C=60°,BC=CA=AB=1. 1分

  又∵∠BEP=∠CFE=∠FQA=90°,BP=x.

  ∴BE=x,CE=1-x,CF=x,AF=1-(x)=x.

  ∴AQ=AF=(x),

  ∴y=x+. 2

  (2)由方程組 3分

  得x=. 4

  ∴當(dāng)點(diǎn)P和點(diǎn)Q重合時(shí),x=

  ∴EF=CF=(x)=. 5分

  (3)設(shè)線段PE、FQ相交于點(diǎn)M,

  易證△MEF是等邊三角形, 6分

  且當(dāng)點(diǎn)P和點(diǎn)A重合時(shí),EF最短為. 7分

  ∴≤m<. 8分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,等邊△ABC內(nèi)接于⊙O,點(diǎn)P是劣弧
BC
上的一點(diǎn)(端點(diǎn)除外),延長(zhǎng)BP至D,使BD=AP,連接CD.
(1)若AP過(guò)圓心O,如圖①,請(qǐng)你判斷△PDC是什么三角形?并說(shuō)精英家教網(wǎng)明理由;
(2)若AP不過(guò)圓心O,如圖②,△PDC又是什么三角形?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,等邊△ABC的邊長(zhǎng)為6,點(diǎn)D、E分別在AB、AC上,且AD=AE=2,直線l過(guò)點(diǎn)A,且l∥BC,若點(diǎn)F從點(diǎn)B開(kāi)始以每秒1個(gè)單位長(zhǎng)的速度沿射線BC方向運(yùn)動(dòng),設(shè)F點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t>0時(shí),直線DF交l于點(diǎn)G,GE的延長(zhǎng)線與BC的延長(zhǎng)線交于點(diǎn)H,AB與GH相交于點(diǎn)O.
(1)當(dāng)t為何值時(shí),AG=AE?
(2)請(qǐng)證明△GFH的面積為定值;
(3)當(dāng)t為何值時(shí),點(diǎn)F和點(diǎn)C是線段BH的三等分點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,等邊三角形ABC邊長(zhǎng)為2,以BC為對(duì)稱軸將△ABC翻折,得到四邊形ABDC,將此四邊形放在直角坐標(biāo)系xOy中,使AB在x軸上,點(diǎn)D在直線y=
3
2
x-
3
上.
(1)根據(jù)上述條件畫出圖形,并求出A、B、D、C的坐標(biāo);
(2)若直線y=
3
2
x-
3
與y軸交于點(diǎn)P,拋物線y=ax2+bx+c,過(guò)A、B、P三點(diǎn),求這條拋物線的函數(shù)關(guān)系式;
(3)求出拋物線的頂點(diǎn)坐標(biāo),并指出這個(gè)點(diǎn)在△ABC的什么特殊位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,等邊△ABC的邊長(zhǎng)為2,E為BC邊的中點(diǎn),分別以頂點(diǎn)B、C為圓心,BE、CE長(zhǎng)為半徑畫弧交AB、AC于點(diǎn)D、F.求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,等邊三角形ABD與等邊三角形ACE具有公共頂點(diǎn)A,連接CD,BE,交于點(diǎn)P.
(1)觀察度量,∠BPC的度數(shù)為
120°
120°
.(直接寫出結(jié)果)
(2)若繞點(diǎn)A將△ACE旋轉(zhuǎn),使得∠BAC=180°,請(qǐng)你畫出變化后的圖形.(示意圖)
(3)在(2)的條件下,求出∠BPC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案