【題目】如圖,△ABC 中,AB=AC,D、E、F 分別為 AB、BC、AC 上的點(diǎn),且BD=CE,∠DEF=∠B.

(1)求證:∠BDE=∠CEF;

(2)當(dāng)∠A=60°時(shí),求證:△DEF 為等邊三角形.

【答案】(1)見(jiàn)解析(2)見(jiàn)解析.

【解析】

(1)利用外角的性質(zhì)可得∠B+BDE=DEF+CEF,結(jié)合條件可證得結(jié)論;

(2)由條件可知∠B=C=60°,結(jié)合條件可證明BDE≌△CEF,可證得DE=EF,則可證明DEF為等邊三角形.

(1)∵∠DECBDE的一個(gè)外角,

∴∠B+BDE=DEF+CEF,

∵∠DEF=B,

∴∠BDE=CEF;

(2)由(1)可知∠BDE=CEF,

AB=AC,A=60°

∴∠B=C=60°,

∴∠DEF=60°,

BDECEF

,

∴△BDE≌△CEF(ASA),

DE=EF,

∴△DEF為等邊三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知射線 DM與直線AB交于點(diǎn)A,線段EC與直線AB交于點(diǎn)CABDE.

(1)當(dāng)MAC=100°,BCE=120°時(shí),把EC繞點(diǎn)E旋轉(zhuǎn)多大角度(所求角度小于180°)時(shí),可判定MDEC?請(qǐng)你設(shè)計(jì)出兩種方案,并畫(huà)出草圖;

(2)若將EC繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)60°時(shí),點(diǎn)C與點(diǎn)A恰好重合,請(qǐng)畫(huà)出草圖,并在圖中找出同位角、內(nèi)錯(cuò)角各兩對(duì)(先用數(shù)字標(biāo)出角,再回答).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)我們利用兩種不同的方法計(jì)算同一圖形的面積時(shí),可以得到一個(gè)等式.例如,由圖①,可得等式:(a2b)(ab)a23ab2b2.

(1)由圖②,寫(xiě)出所得的等式;

(2)利用(1)中所得到的結(jié)論,解決下面的問(wèn)題: 已知abc11,abbcac38,求a2b2c2的值;

(3)如圖③,琪琪用2 A型紙片,3 B型紙片,5 C型紙片拼出一個(gè)長(zhǎng)方形,那么該長(zhǎng)方形較長(zhǎng)的一條邊長(zhǎng)為多少.(直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛汽車(chē)從A地駛往B地,前三分之一路段為普通公路,其余路段為高速公路.已知汽車(chē)在普通公路上行駛的速度為60km/h,在高速公路上行駛的速度為100km/h.汽車(chē)從A地到B地共行駛了2.2h.請(qǐng)你根據(jù)以上信息,就該汽車(chē)行駛的“路程”或“時(shí)間”,提出一個(gè)問(wèn)題:   ,并列出方程,求出解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為圓心的圓過(guò)點(diǎn)A(13,0),直線y=kx﹣3k+4與⊙O交于B、C兩點(diǎn),則弦BC的長(zhǎng)的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊△ABC 中,點(diǎn) D、E 分別在邊 BC、AC 上,且 AE=CD,BE 與 AD 相交于點(diǎn) P,BQ⊥AD 于點(diǎn) Q.

(1)求證:BE=AD;

(2)若 PQ=4,求 BP 的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某校綜合實(shí)踐活動(dòng)小組的同學(xué)欲測(cè)量公園內(nèi)一棵樹(shù)DE的高度,他們?cè)谶@棵樹(shù)的正前方一座樓亭前的臺(tái)階上A點(diǎn)處測(cè)得樹(shù)頂端D的仰角為30°,朝著這棵樹(shù)的方向走到臺(tái)階下的點(diǎn)C處,測(cè)得樹(shù)頂端D的仰角為60°.已知A點(diǎn)的高度AB為3米,臺(tái)階AC的坡度為1: (即AB:BC=1: ),且B、C、E三點(diǎn)在同一條直線上.請(qǐng)根據(jù)以上條件求出樹(shù)DE的高度(側(cè)傾器的高度忽略不計(jì)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖①,BP、CP分別平分△ABC的外角∠CBD、∠BCE,BQ、CQ分別平分∠PBC、∠PCB,BM、CN分別是∠PBD、∠PCE的角平分線.

(1)當(dāng)∠BAC=40°時(shí),∠BPC=   ,∠BQC=   ;

(2)當(dāng)BM∥CN時(shí),求∠BAC的度數(shù);

(3)如圖,當(dāng)∠BAC=120°時(shí),BM、CN所在直線交于點(diǎn)O,直接寫(xiě)出∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中BC=8,CD=6,將△ABE沿BE折疊,使點(diǎn)A恰好落在對(duì)角線BD上F處,則DE的長(zhǎng)是(
A.3
B.
C.5
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案