【題目】若函數(shù)y=k+3x|k|2+4是一次函數(shù),則函數(shù)解析式是________

【答案】y=6x+4.

【解析】解:由原函數(shù)是一次函數(shù)得, k+3≠0 |k|﹣2=1,解得:k=3,所以,函數(shù)解析式是y=6x+4

故答案為:y=6x+4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)PBC中點(diǎn),兩邊PE、PF分別交AB、AC于點(diǎn)E、F,當(dāng)∠EPF△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)(點(diǎn)E不與A、B重合),給出以下四個(gè)結(jié)論:①AE=CF;②△EPF是等腰直角三角形;③2S四邊形AEPF=SABC;④BE+CF=EF.上述結(jié)論中始終正確的有(  )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明用30元錢(qián)買筆記本和練習(xí)本共30本,已知每個(gè)筆記本4元,每個(gè)練習(xí)本4角,那么他最多能買筆記本( )

A7 B6 C5 D4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為迎接“勞動(dòng)周”的到來(lái),某校將九(1)班50名學(xué)生本周的課后勞動(dòng)時(shí)間比上周都延長(zhǎng)了10分鐘,則該班學(xué)生本周勞動(dòng)時(shí)間的下列數(shù)據(jù)與上周比較不發(fā)生變化的是( )
A.平均數(shù)
B.中位數(shù)
C.眾數(shù)
D.方差

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(1,2).

(1)寫(xiě)出點(diǎn)A、B的坐標(biāo):
A( , )、B(
(2)將△ABC先向左平移2個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到△A′B′C′,則A′B′C′的三個(gè)頂點(diǎn)坐標(biāo)分別是A′( , )、B′( , )、C′().
(3)△ABC的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)根據(jù)如圖所示的對(duì)話內(nèi)容回答下列問(wèn)題.
(1)求該魔方的棱長(zhǎng);
(2)求該長(zhǎng)方體紙盒的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)操作發(fā)現(xiàn):如圖①,D是等邊ABC的邊BA上一動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B不重合),連接DC,以DC為邊在BC上方作等邊DCF,連接AF,你能發(fā)現(xiàn)AFBD之間的數(shù)量關(guān)系嗎?并證明你發(fā)現(xiàn)的結(jié)論;

(2)類比猜想:如圖②,當(dāng)動(dòng)點(diǎn)D運(yùn)動(dòng)至等邊ABCBA的延長(zhǎng)線時(shí),其他作法與(1)相同,猜想AFBD(1)中的結(jié)論是否仍然成立?

(3)深入探究:Ⅰ.如圖③,當(dāng)動(dòng)點(diǎn)D在等邊ABCBA上運(yùn)動(dòng)時(shí)(點(diǎn)DB不重合),連接DC,以DC為邊在BC上方和下方分別作等邊DCF和等邊DCF′,連接AF,BF′,探究AF,BF′AB有何數(shù)量關(guān)系?并證明你的探究的結(jié)論;Ⅱ.如圖④,當(dāng)動(dòng)點(diǎn)D在等邊ABC的邊BA的延長(zhǎng)線上運(yùn)動(dòng)時(shí),其他作法與圖③相同,Ⅰ中的結(jié)論是否成立?若不成立,是否有新的結(jié)論?并證明你得出的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為O的直徑,點(diǎn)C在O上,延長(zhǎng)BC至點(diǎn)D,使DC=CB,延長(zhǎng)DA與O的另一個(gè)交點(diǎn)為E,連結(jié)AC,CE。

(1)求證:B=D;

(2)若AB= ,BC-AC=2,求CE的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的方程mx24x+10有實(shí)數(shù)根,則m的取值范圍是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案