【題目】如圖,C為線段BD上一動(dòng)點(diǎn),分別過(guò)點(diǎn)B、D作AB⊥BD、ED⊥BD,連結(jié)AC、EC.已知AB=6,DE=2,BD=15,設(shè)CD=x.
(1)用含x的代數(shù)式表示AC+CE的值;(寫出過(guò)程)
(2)請(qǐng)問點(diǎn)C滿足條件 時(shí),AC+CE的值最。
(3)根據(jù)(2)中的結(jié)論,畫圖并標(biāo)上數(shù)據(jù),求代數(shù)式的最小值.
【答案】(1)AC+CE=;(2)點(diǎn)C與點(diǎn)A和點(diǎn)E在同一條直線上;(3)最小值為5.
【解析】
(1)設(shè)CD=x,則BC=15﹣x,由于△ABC和△CDE都是直角三角形,故AC,CE可由勾股定理求得從而得解;
(2)若點(diǎn)C不在AE的連線上,根據(jù)三角形中任意兩邊之和>第三邊知,AC+CE>AE,故當(dāng)A、C、E三點(diǎn)共線時(shí),AC+CE的值最小;
(3)結(jié)合圖形可得AB∥DE,從而可得到,列出方程求解可得到CD和BC的值,由(2)可知此時(shí)代入代數(shù)式中計(jì)算可得出最小值.
(1)∵AB=6,DE=2,BD=15,
設(shè)CD=x則BC=15﹣x,根據(jù)勾股定理,得
AC+CE== +
(2)根據(jù)兩點(diǎn)之間線段最短可知:
當(dāng)點(diǎn)C與點(diǎn)A和點(diǎn)E在同一條直線上時(shí),AC+CE的值最小;
故答案為:點(diǎn)C與點(diǎn)A和點(diǎn)E在同一條直線上.
(3)如圖所示:
∵AB⊥BD、ED⊥BD,
∴AB∥DE,
∴,即 ,
解得x=,則4﹣x=,
=
=5
答:代數(shù)式的最小值為5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形ABCD中,對(duì)角線BD被AC平分,那么再加上下述中的條件( ) 可以得到結(jié)論: “四邊形ABCD是平行四邊形”.
A.AB=CD B.∠BAD=∠BCDC.∠ABC=∠ADC D.AC= BD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC的三個(gè)頂點(diǎn)分別落在邊長(zhǎng)為1的正方形格上,
(1)分別寫出A、B、C三點(diǎn)坐標(biāo);
(2)△DEF可以看作是△ABC經(jīng)過(guò)若干次的圖形變化(軸對(duì)稱、平移)得到的,寫出一種由△ABC得到△DEF的過(guò)程,并體現(xiàn)在坐標(biāo)系中.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC是等邊三角形,點(diǎn)D在BC邊上,點(diǎn)E在AB的延長(zhǎng)線上,將DE繞D點(diǎn)順時(shí)針旋轉(zhuǎn)120°得到DF.
(1)如圖1,若點(diǎn)F恰好落在AC邊上,求證:點(diǎn)D是BC的中點(diǎn);
(2)如圖2,在(1)的條件下,若=45°,連接AD,求證:;
(3)如圖3,若,連CF,當(dāng)CF取最小值時(shí),直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC的兩邊落在坐標(biāo)軸上,反比例函數(shù)y=的圖象在第一象限的分支過(guò)AB的中點(diǎn)D交OB于點(diǎn)E,連接EC,若△OEC的面積為12,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,面積為4的正方形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,邊OA、OC分別在x軸、y軸的正半軸上,點(diǎn)B、P都在函數(shù)y=(x>0)的圖象上,過(guò)動(dòng)點(diǎn)P分別作軸x、y軸的平行線,交y軸、x軸于點(diǎn)D、E.設(shè)矩形PDOE與正方形OABC重疊部分圖形的面積為S,點(diǎn)P的橫坐標(biāo)為m.
(1)求k的值;
(2)用含m的代數(shù)式表示CD的長(zhǎng);
(3)求S與m之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形OBCD的邊OB在x軸上,反比例函數(shù)y1=(x>0)的圖象經(jīng)過(guò)菱形對(duì)角線的交點(diǎn)A,且交另一邊BC交于點(diǎn)F,點(diǎn)A的坐標(biāo)為(4,2).
(1)求反比例的函數(shù)的解析式;
(2)設(shè)經(jīng)過(guò)B,C兩點(diǎn)的一次函數(shù)的解析式為y2=mx+b,求y1<y2的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,點(diǎn)D,E分別在邊AB,AC上,將∠A沿著DE所在直線折疊,A與A′重合,若∠1+∠2=140°,則∠A的度數(shù)是( 。
A.70°B.75°C.80°D.85°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=2x+4,
(1)在如圖所示的平面直角坐標(biāo)系中,畫出函數(shù)的圖象.
(2)求圖象與x軸的交點(diǎn)A的坐標(biāo),與y軸交點(diǎn)B的坐標(biāo).
(3)利用圖象直接寫出:當(dāng)y<0時(shí),x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com