【題目】二次函數(shù)的圖象交x軸于A(-1, 0),B(4, 0)兩點,交y軸于點C.動點M從點A出發(fā),以每秒2個單位長度的速度沿AB方向運動,過點M作MN⊥x軸交直線BC于點N,交拋物線于點D,連接AC.設運動的時間為t秒.
(1)求二次函數(shù)的表達式;
(2)連接BD,當時,求△DNB的面積;
(3)在直線MN上存在一點P,當△PBC是以∠BPC為直角的等腰直角三角形時,直接寫出此時點D的坐標.
【答案】(1);(2)2;(3)(1,0)或(3,0) D(1,3)或(3,2)
【解析】
(1)將A、B的坐標代入解答即可.
(2)先求出BC的解析式,再將x=2代入和,得出D、N的坐標即可求出DN的值,再根據(jù)三角形的面積公式計算出答案即可.
(3)由BM的值得出M的坐標,設P(2t-1,m),由勾股定理可得,根據(jù)題意PB=PC,所以,得出P的坐標為,PC⊥PB故,解得t=1或t=2,即得出答案.
(1)將A(-1, 0),B(4, 0)代入中,得:
解得:
故二次函數(shù)的表達式為:
(2)
AM=3
又
設BC的表達式為
將點C(0,2),B(4,0)代入得:
解得:
故直線BC的解析式為:
將x=2代入和,
得D(2,3),N(2,1)
(3)
設P(2t-1,m)
,且PB=PC
PC⊥PB
t=1或t=2
或者
D(1,3)或者D(3,2)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AB=4cm,C為AB上一動點,過點C的直線交⊙O于D、E兩點,且∠ACD=60°,DF⊥AB于點F,EG⊥AB于點G,當點C在AB上運動時,設AF=xcm,DE=ycm(當x的值為0或3時,y的值為2),探究函數(shù)y隨自變量x的變化而變化的規(guī)律.
(1)通過取點、畫圖、測量,得到了x與y的幾組對應值,如下表:
x/cm | 0 | 0.40 | 0.55 | 1.00 | 1.80 | 2.29 | 2.61 | 3 |
y/cm | 2 | 3.68 | 3.84 | 3.65 | 3.13 | 2.70 | 2 |
(2)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象;
(3)結合畫出的函數(shù)圖象,解決問題:點F與點O重合時,DE長度約為 cm(結果保留一位小數(shù)).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,是一個三節(jié)段式伸縮晾衣架,如圖2,是其衣架側面示意圖.MN為衣架的墻體固定端,A為固定支點,B為滑動支點,四邊形DFGI和四邊形EIJH是菱形,且AF=BF=CH=DF=EH.點B在AN上滑動時,衣架外延鋼體發(fā)生角度形變,其外延長度(點A和點C間的距離)也隨之變化,形成衣架伸縮效果.伸縮衣架為初始狀態(tài)時,衣架外延長度為42cm.當點B向點A移動8cm時,外延長度為90cm.如圖3,當外延長度為120cm時,則BD和GE的間距PQ長為______________cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,下列結論:①ac<0,②b﹣2a<0,③b2﹣4ac<0,④a﹣b+c<0,正確的是( )
A.①②B.①④C.②③D.②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在同一直角坐標系中,二次函數(shù)的圖象與兩坐標軸分別交于點、點和點,一次函數(shù)的圖象與拋物線交于,兩點
(1)求二次函數(shù)的表達式;
(2)當取什么值時,一次函數(shù)的函數(shù)值大于二次函數(shù)的函數(shù)值?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,拋物線的頂點為,經過拋物線上的兩點和的直線交拋物線的對稱軸于點.
(1)求拋物線的解析式和直線的解析式.
(2)在拋物線上兩點之間的部分(不包含兩點),是否存在點,使得?若存在,求出點的坐標;若不存在,請說明理由.
(3)若點在拋物線上,點在軸上,當以點為頂點的四邊形是平行四邊形時,直接寫出滿足條件的點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明購買A,B兩種商品,每次購買同一種商品的單價相同,具體信息如下表:
次數(shù) | 購買數(shù)量(件 | 購買總費用(元 | |
A | B | ||
第一次 | 2 | 1 | 55 |
第二次 | 1 | 3 | 65 |
根據(jù)以上信息解答下列問題:
(1)求A,B兩種商品的單價;
(2)若第三次購買這兩種商品共12件,且A種商品的數(shù)量不少于B種商品數(shù)量的2倍,請設計出最省錢的購買方案,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com