【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,DE平分∠ADB,則∠B=( )
A. 40° B. 30° C. 25° D. 22.5
【答案】B
【解析】
利用全等直角三角形的判定定理HL證得Rt△ACD≌Rt△AED,則對(duì)應(yīng)角∠ADC=∠ADE;然后根據(jù)已知條件“DE平分∠ADB”、平角的定義證得∠ADC=∠ADE=∠EDB=60°;最后由直角三角形的兩個(gè)銳角互余的性質(zhì)求得∠B=30°.
∵在△ABC中,∠C=90°,AD是角平分線,DE⊥AB于E,
∴CD=ED,
在Rt△ACD和Rt△AED中,
,
∴Rt△ACD≌Rt△AED(HL),
∴∠ADC=∠ADE(全等三角形的對(duì)應(yīng)角相等).
∵∠ADC+∠ADE+∠EDB=180°,DE平分∠ADB,
∴∠ADC=∠ADE=∠EDB=60°.
∴∠B+∠EDB=90°,
∴∠B=30°.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與直線交于、兩點(diǎn),過(guò)作軸交拋物線于點(diǎn),直線交軸于點(diǎn).
求、、三點(diǎn)的坐標(biāo);
若點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),過(guò)作軸交拋物線于點(diǎn),連接、,當(dāng)時(shí),求的值;
如圖,連接,及,設(shè)點(diǎn)是的中點(diǎn),點(diǎn)是線段上任意一點(diǎn),將沿邊翻折得到,求當(dāng)為何值時(shí),與重疊部分的面積是面積的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)三角形ABC(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn)A、C的坐標(biāo)分別是(-5,5),(-2,3).
(1)請(qǐng)?jiān)趫D中的網(wǎng)格平面內(nèi)畫(huà)出平面直角坐標(biāo)系xOy;
(2)請(qǐng)畫(huà)出△ABC關(guān)于y軸對(duì)稱的△A1B1C1,并寫(xiě)出頂點(diǎn)A1,B1,C1的坐標(biāo)
(3)請(qǐng)?jiān)?/span>x軸上求作一點(diǎn)P,使△PB1C的周長(zhǎng)最小.請(qǐng)標(biāo)出點(diǎn)P的位置(保留作圖痕跡,不需說(shuō)明作圖方法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知一次函數(shù)的圖像與x軸交于點(diǎn),與軸交于點(diǎn).
(1)求直線的解析式;
(2)在坐標(biāo)系中能否找到點(diǎn),使得且?如果能,求出滿足條件的點(diǎn)的坐標(biāo);如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD是正方形,點(diǎn)B,C分別在直線和上,點(diǎn)A,D是x軸上兩點(diǎn).
(1)若此正方形邊長(zhǎng)為2,k=_______.
(2)若此正方形邊長(zhǎng)為a,k的值是否會(huì)發(fā)生變化?若不會(huì)發(fā)生變化,請(qǐng)說(shuō)明理由;若會(huì)發(fā)生變化,求出a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(8分)如圖,AC是⊙O的直徑,OB是⊙O的半徑,PA切⊙O于點(diǎn)A,PB與AC的延長(zhǎng)線交于點(diǎn)M,∠COB=∠APB.
(1)求證:PB是⊙O的切線;
(2)當(dāng)OB=3,PA=6時(shí),求MB,MC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,∠ABC=45°,AD是⊙O的切線交BC的延長(zhǎng)線于D,AB交OC于E.
(1)求證:AD∥OC;
(2)若AE=2,CE=2.求⊙O的半徑和線段BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某游樂(lè)園有一個(gè)滑梯高度AB,高度AC為3米,傾斜角度為58°.為了改善滑梯AB的安全性能,把傾斜角由58°減至30°,調(diào)整后的滑梯AD比原滑梯AB增加多少米?(精確到0.1米)
(參考數(shù)據(jù):sin58°=0.85,cos58°=0.53,tan58°=1.60)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜邊OB=4,將Rt△OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)60°,如題圖1,連接BC.
(1)填空:∠OBC= °;
(2)如圖1,連接AC,作OP⊥AC,垂足為P,求OP的長(zhǎng)度;
(3)如圖2,點(diǎn)M,N同時(shí)從點(diǎn)O出發(fā),在△OCB邊上運(yùn)動(dòng),M沿O→C→B路徑勻速運(yùn)動(dòng),N沿O→B→C路徑勻速運(yùn)動(dòng),當(dāng)兩點(diǎn)相遇時(shí)運(yùn)動(dòng)停止,已知點(diǎn)M的運(yùn)動(dòng)速度為1.5單位/秒,點(diǎn)N的運(yùn)動(dòng)速度為1單位/秒,設(shè)運(yùn)動(dòng)時(shí)間為x秒,△OMN的面積為y,求當(dāng)x為何值時(shí)y取得最大值?最大值為多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com