【題目】如圖,在平行四邊形ABCD中,E、F分別是AB、BC的中點,CE⊥AB,垂足為E,AF⊥BC,垂足為F,AF與CE相交于點G.
(1)證明:△CFG≌△AEG.
(2)若AB=4,求四邊形AGCD的對角線GD的長.
【答案】(1)答案見解析;(2).
【解析】試題分析:(1)根據(jù)線段垂直平分線的性質(zhì)得到AB=AC,AC=BC,得到AB=AC=BC,求得∠B=60°,于是得到∠BAF=∠BCE=30°,根據(jù)全等三角形的判定定理即可得到結(jié)論;
(2)根據(jù)菱形的判斷對了得到ABCD是菱形,求得∠ADC=∠B=60°,AD=CD,求得∠ADG=30°,解直角三角形即可得到結(jié)論.
試題解析:(1)證明:∵E、F分別是AB、BC的中點,CE⊥AB,AF⊥BC,∴AB=AC,AC=BC,∴AB=AC=BC,∴∠B=60°,∴∠BAF=∠BCE=30°.∵E、F分別是AB、BC的中點,∴AE=CF.在△CFG≌△AEG中, ,∴△CFG≌△AEG;
(2)解:∵四邊形ABCD是平行四邊形,AB=BC,∴ABCD是菱形,∴∠ADC=∠B=60°,AD=CD.∵AD∥BC,CD∥AB,∴AF⊥AD,CE⊥CD.∵△CFG≌△AEG,∴AG=CG.∵GA⊥AD,GC⊥CD,GA=GC,∴GD平分∠ADC,∴∠ADG=30°.∵AD=AB=4,∴DG==.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】輪船沿江從A港順流行駛到B港,比從B港返回A港少用3小時,若船速為26千米/時,水速為2千米/時,求A港和B港相距多少千米.設(shè)A港和B港相距x千米.根據(jù)題意,可列出的方程是(。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上點A,B,C的位置如圖,點C是線段AB的中點,點A表示的數(shù)比點C表示的數(shù)的兩倍還大3,點B和點C表示的數(shù)是互為相反數(shù),點C表示的數(shù)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB是平角,OM、ON分別是∠AOC、∠BOD的平分線,且∠AOC=40°,∠BON=25°.
求:(1)∠COD的度數(shù);
(2)∠MON的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知O是直線CD上的點,OA平分∠BOC,OE平分∠BOD,∠AOC=35°,
(1) 求∠BOE的度數(shù),
(2)求∠COE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知RtΔABC,∠C=90°,D為BC的中點.以AC為直徑的圓O交AB于點E.
(1)求證:DE是圓O的切線.
(2)若AE:EB=1:2,BC=6,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中央電視臺的《朗讀者》節(jié)目激發(fā)了同學(xué)們的讀書熱情,為了引導(dǎo)學(xué)生“多讀書,讀好書”,某校對八年級部分學(xué)生的課外閱讀量進行了隨機調(diào)查,整理調(diào)查結(jié)果發(fā)現(xiàn),學(xué)生課外閱讀的本數(shù)量少的有本,最多的有本,并根據(jù)調(diào)查結(jié)果繪制了不完整的圖表,如下所示:
本數(shù)(本) | 頻數(shù)(人數(shù)) | 頻率 |
合計 |
()統(tǒng)計圖表中的__________,__________,__________.
()請將頻數(shù)分布直方圖補充完整.
()求所有被調(diào)查學(xué)生課外閱讀的平均本數(shù).
()若該校八年級共有名學(xué)生,請你估計該校八年級學(xué)生課外閱讀本及以上的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)-20+(-15)-(-28)-17
(2)
(3)
(4) -32÷(-3)2+3×(-2)+|-4|
(5)
(6)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com