凱里市某大型酒店有包房100間,在每天晚餐營業(yè)時間,每間包房收包房費100元時,包房便可全部租出;若每間包房收費提高20元,則減少10間包房租出,若每間包房收費再提高20元,則再減少10間包房租出,以每次提高20元的這種方法變化下去.
(1)設(shè)每間包房收費提高x(元),則每間包房的收入為y1(元),但會減少y2間包房租出,請分別寫出y1、y2與x之間的函數(shù)關(guān)系式.
(2)為了投資少而利潤大,每間包房提高x(元)后,設(shè)酒店老板每天晚餐包房總收入為y(元),請寫出y與x之間的函數(shù)關(guān)系式,求出每間包房每天晚餐應(yīng)提高多少元可獲得最大包房費收入,并說明理由.

(1)   
(2)每間包房每天晚餐應(yīng)提高60元課獲得最大包房費收入。

解析(1):根據(jù)題意  
  
 
=
(2)根據(jù)題意:
y=


=

 為20的倍數(shù), 
 為40或60時y有最大值為11200元。
 要投資少
 的值為60元。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

凱里市某大型酒店有包房100間,在每天晚餐營業(yè)時間,每間包房收包房費100元時,包房便可全部租出;若每間包房收費提高20元,則減少10間包房租出,若每間包房收費再提高20元,則再減少10間包房租出,以每次提高20元的這種方法變化下去.
(1)設(shè)每間包房收費提高x(元),則每間包房的收入為y1(元),但會減少y2間包房租出,請分別寫出y1,y2與x之間的函數(shù)關(guān)系式.
(2)為了投資少而利潤大,每間包房提高x(元)后,設(shè)酒店老板每天晚餐包房總收入為y(元),請寫出y與x之間的函數(shù)關(guān)系式,求出每間包房每天晚餐應(yīng)提高多少元可獲得最大包房費收入,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

凱里市某大型酒店有包房100間,在每天晚餐營業(yè)時間,每間包房收包房費100元時,包房便可全部租出;若每間包房收費提高20元,則減少10間包房租出,若每間包房收費再提高20元,則再減少10間包房租出,以每次提高20元的這種方法變化下去.

(1)設(shè)每間包房收費提高x(元),則每間包房的收入為y1(元),但會減少y2間包房租出,請分別寫出y1、y2與x之間的函數(shù)關(guān)系式.

(2)為了投資少而利潤大,每間包房提高x(元)后,設(shè)酒店老板每天晚餐包房總收入為y(元),請寫出y與x之間的函數(shù)關(guān)系式,求出每間包房每天晚餐應(yīng)提高多少元可獲得最大包房費收入,并說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010屆江西省初一年級上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題

凱里市某大型酒店有包房100間,在每天晚餐營業(yè)時間,每間包房收包房費100元時,包房便可全部租出;若每間包房收費提高20元,則減少10間包房租出,若每間包房收費再提高20元,則再減少10間包房租出,以每次提高20元的這種方法變化下去.

(1)設(shè)每間包房收費提高x(元),則每間包房的收入為y1(元),但會減少y2間包房租出,請分別寫出y1、y2與x之間的函數(shù)關(guān)系式.

(2)為了投資少而利潤大,每間包房提高x(元)后,設(shè)酒店老板每天晚餐包房總收入為y(元),請寫出y與x之間的函數(shù)關(guān)系式,求出每間包房每天晚餐應(yīng)提高多少元可獲得最大包房費收入,并說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:貴州省中考真題 題型:解答題

凱里市某大型酒店有包房100間,在每天晚餐營業(yè)時間,每間包房收包房費100元時,包房便可全部租出。若每間包房收費提高20元,則減少10間包房租出;若每間包房收費再提高20元,則再減少10間包房租出。以每次提高20元的這種方法變化下去。
(1)設(shè)每間包房收費提高x(元),則每間包房的收入為y1(元),但會減少y2間包房租出,請分別寫出y1、y2與x之間的函數(shù)關(guān)系式;
 (2)為了投資少而利潤大,每間包房提高x(元)后,設(shè)酒店老板每天晚餐包房總收入為y(元),請寫出y與x之間的函數(shù)關(guān)系式,求出每間包房每天晚餐應(yīng)提高多少元可獲得最大包房費收入,并說明理由。

查看答案和解析>>

同步練習(xí)冊答案