【題目】如圖,P為正方形ABCD的邊BC上一動點(P與B、C不重合),連接AP,過點B作BQ⊥AP交CD于點Q,將△BQC沿BQ所在的直線對折得到△BQC′,延長QC′交BA的延長線于點M.
(1)試探究AP與BQ的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)當AB=3,BP=2PC,求QM的長;
(3)當BP=m,PC=n時,求AM的長.
【答案】(1)AP=BQ;(2)QM的長為;(3)AM的長為.
【解析】
(1)要證AP=BQ,只需證△PBA≌△QCB即可;
(2)過點Q作QH⊥AB于H,如圖.易得QH=BC=AB=3,BP=2,PC=1,然后運用勾股定理可求得AP(即BQ)=,BH=2.易得DC∥AB,從而有∠CQB=∠QBA.由折疊可得∠C′QB=∠CQB,即可得到∠QBA=∠C′QB,即可得到MQ=MB.設(shè)QM=x,則有MB=x,MH=x-2.在Rt△MHQ中運用勾股定理就可解決問題;
(3)過點Q作QH⊥AB于H,如圖,同(2)的方法求出QM的長,就可得到AM的長.
解:(1)AP=BQ.
理由:∵四邊形ABCD是正方形,
∴AB=BC,∠ABC=∠C=90°,
∴∠ABQ+∠CBQ=90°.
∵BQ⊥AP,
∴∠PAB+∠QBA=90°,
∴∠PAB=∠CBQ.
在△PBA和△QCB中,
,
∴△PBA≌△QCB,
∴AP=BQ;
(2)過點Q作QH⊥AB于H,如圖.
∵四邊形ABCD是正方形,
∴QH=BC=AB=3.
∵BP=2PC,
∴BP=2,PC=1,
∴BQ=AP===,
∴BH===2.
∵四邊形ABCD是正方形,
∴DC∥AB,
∴∠CQB=∠QBA.
由折疊可得∠C′QB=∠CQB,
∴∠QBA=∠C′QB,
∴MQ=MB.
設(shè)QM=x,則有MB=x,MH=x-2.
在Rt△MHQ中,
根據(jù)勾股定理可得x2=(x-2)2+32,
解得x=.
∴QM的長為;
(3)過點Q作QH⊥AB于H,如圖.
∵四邊形ABCD是正方形,BP=m,PC=n,
∴QH=BC=AB=m+n.
∴BQ2=AP2=AB2+PB2,
∴BH2=BQ2-QH2=AB2+PB2-AB2=PB2,
∴BH=PB=m.
設(shè)QM=x,則有MB=QM=x,MH=x-m.
在Rt△MHQ中,
根據(jù)勾股定理可得x2=(x-m)2+(m+n)2,
解得x=m+n+,
∴AM=MB-AB=m+n+-m-n=.
∴AM的長為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,甲、乙兩個可以自由轉(zhuǎn)動的均勻的轉(zhuǎn)盤,甲轉(zhuǎn)盤被分成3個面積相等
的扇形,乙轉(zhuǎn)盤被分成4個面積相等的扇形,每一個扇形都標有相應(yīng)的數(shù)字,同時轉(zhuǎn)
動兩個轉(zhuǎn)盤,當轉(zhuǎn)盤停止后,設(shè)甲轉(zhuǎn)盤中指針所指區(qū)域內(nèi)的數(shù)字為m,乙轉(zhuǎn)盤中指針
所指區(qū)域內(nèi)的數(shù)字為n(若指針指在邊界線上時,重轉(zhuǎn)一次,直到指針都指向一個區(qū)
域為止).
【1】請你用畫樹狀圖或列表格的方法求出|m+n|>1的概率
【2】直接寫出點(m,n)落在函數(shù)y=- 圖象上的概率
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知,,三點,其中a= ,b,c滿足關(guān)系式,P是第二象限內(nèi)一點,連接PO,且P、A、C三點在一條直線上.
(1)求A、B、C三點的坐標;
(2)若規(guī)定:在三角形中,若兩條邊相等,則這兩條邊與第三邊的夾角相等。如在△DEF中,DE=DF,則∠E=∠F.在本圖中若PA=PO,AB=AC,CB⊥OB,垂足為B.求證:AB∥PO.
(3)如果在第二象限內(nèi)有一點P(-2,),求四邊形POBC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,邊長為6,D是BC邊上的動點,∠EDF=60°.
(1)求證:△BDE∽△CFD;
(2)當BD=1,CF=3時,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(2,1),B(﹣1,1),C(﹣1,﹣3),D(2,﹣3),點P從點A出發(fā),以每秒1個單位長度的速度沿A﹣B﹣C﹣D﹣A…的規(guī)律在圖邊形ABCD的邊上循環(huán)運動,則第2019秒時點P的坐標為( 。
A. (1,1)B. (0,1)C. (﹣1,1)D. (2,﹣1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】六一期間,某公園游戲場舉行“迎奧運”活動.有一種游戲的規(guī)則是:在一個裝有個紅球和若干個白球(每個球除顏色外其他相同)的袋中,隨機摸一個球,摸到一個紅球就得到一個奧運福娃玩具.已知參加這種游戲活動為人次,公園游戲場發(fā)放的福娃玩具為個.
求參加一次這種游戲活動得到福娃玩具的概率;
請你估計袋中白球接近多少個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知∠AOB,作圖.
步驟1:在OB上任取一點M,以點M為圓心,MO長為半徑畫半圓,分別交OA、OB于點P、Q;
步驟2:過點M作PQ的垂線交弧PQ 于點C;
步驟3:畫射線OC.
則下列判斷:①弧CQ=弧PC;②MC∥OA;③OP=PQ;④OC平分∠AOB,
其中正確的為_______________(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.
(1)求證:四邊形AECD是菱形;
(2)若點E是AB的中點,試判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有A、B兩組卡片共5張,A組的三張分別寫有數(shù)字2,4,6,B組的兩張分別寫有3,5.它們除了數(shù)字外沒有任何區(qū)別,
(1)隨機從A組抽取一張,求抽到數(shù)字為2的概率;
(2)隨機地分別從A組、B組各抽取一張,請你用列表或畫樹狀圖的方法表示所有等可能的結(jié)果.現(xiàn)制定這樣一個游戲規(guī)則:若選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請問這樣的游戲規(guī)則對甲乙雙方公平嗎?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com