【題目】已知:如圖①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.點(diǎn)F是點(diǎn)E關(guān)于AB的對(duì)稱點(diǎn),連接AF、BF.
(1)求AE和BE的長(zhǎng);
(2)若將△ABF沿著射線BD方向平移,設(shè)平移的距離為m(平移距離指點(diǎn)B沿BD方向所經(jīng)過的線段長(zhǎng)度).當(dāng)點(diǎn)F分別平移到線段AB、AD上時(shí),直接寫出相應(yīng)的m的值;
(3)如圖②,將△ABF繞點(diǎn)B順時(shí)針旋轉(zhuǎn)一個(gè)角α(0°<α<180°),記旋轉(zhuǎn)中的△ABF為△A′BF′,在旋轉(zhuǎn)過程中,設(shè)A′F′所在的直線與直線AD交于點(diǎn)P.與直線BD交于點(diǎn)Q.是否存在這樣的P、Q兩點(diǎn),使△DPQ為等腰三角形?若存在,求出此時(shí)DQ的長(zhǎng);若不存在,請(qǐng)說明理由.
【答案】(1)AE=4 ;BE=3;(2)3;;(3)或或或.
【解析】
試題分析:(1)利用矩形性質(zhì)、勾股定理及三角形面積公式求解;
(2)依題意畫出圖形,如答圖2所示.利用平移性質(zhì),確定圖形中的等腰三角形,分別求出m的值;
(3)在旋轉(zhuǎn)過程中,等腰△DPQ有4種情形,如答圖3所示,對(duì)于各種情形分別進(jìn)行計(jì)算.
試題解析:(1)在Rt△ABD中,AB=5,AD=,
由勾股定理得:BD===.
∵=BDAE=ABAD,
∴AE==4.
在Rt△ABE中,AB=5,AE=4,
由勾股定理得:BE=3;
(2)設(shè)平移中的三角形為△A′B′F′,如答圖2所示:
由對(duì)稱點(diǎn)性質(zhì)可知,∠1=∠2.
由平移性質(zhì)可知,AB∥A′B′,∠4=∠1,BF=B′F′=3.
①當(dāng)點(diǎn)F′落在AB上時(shí),
∵AB∥A′B′,
∴∠3=∠4,
∴∠3=∠2,
∴BB′=B′F′=3,即m=3;
②當(dāng)點(diǎn)F′落在AD上時(shí),
∵AB∥A′B′,
∴∠6=∠2,
∵∠1=∠2,∠5=∠1,
∴∠5=∠6,
又易知A′B′⊥AD,
∴△B′F′D為等腰三角形,
∴B′D=B′F′=3,
∴BB′=BD﹣B′D=﹣3=,即m=;
(3)存在.理由如下:
在旋轉(zhuǎn)過程中,等腰△DPQ依次有以下4種情形:
①如答圖3﹣1所示,點(diǎn)Q落在BD延長(zhǎng)線上,且PD=DQ,易知∠2=2∠Q,
∵∠1=∠3+∠Q,∠1=∠2,
∴∠3=∠Q,
∴A′Q=A′B=5,
∴F′Q=F′A′+A′Q=4+5=9.
在Rt△BF′Q中,由勾股定理得:BQ==img src="http://thumb.zyjl.cn/questionBank/Upload/2017/12/28/22/bdbb4804/SYS201712282241170911399810_DA/SYS201712282241170911399810_DA.017.png" width="39" height="24" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />.
∴DQ=BQ﹣BD=;
②如答圖3﹣2所示,點(diǎn)Q落在BD上,且PQ=DQ,易知∠2=∠P,
∵∠1=∠2,
∴∠1=∠P,
∴BA′∥PD,則此時(shí)點(diǎn)A′落在BC邊上.
∵∠3=∠2,
∴∠3=∠1,
∴BQ=A′Q,
∴F′Q=F′A′﹣A′Q=4﹣BQ.
在Rt△BQF′中,由勾股定理得:,
即,
解得:BQ=,
∴DQ=BD﹣BQ==;
③如答圖3﹣3所示,點(diǎn)Q落在BD上,且PD=DQ,易知∠3=∠4.
∵∠2+∠3+∠4=180°,∠3=∠4,
∴∠4=90°﹣∠2.
∵∠1=∠2,
∴∠4=90°﹣∠1.
∴∠A′QB=∠4=90°﹣∠1,
∴∠A′BQ=180°﹣∠A′QB﹣∠1=90°﹣∠1,
∴∠A′QB=∠A′BQ,
∴A′Q=A′B=5,
∴F′Q=A′Q﹣A′F′=5﹣4=1.
在Rt△BF′Q中,由勾股定理得:BQ==,
∴DQ=BD﹣BQ=;
④如答圖3﹣4所示,點(diǎn)Q落在BD上,且PQ=PD,易知∠2=∠3.
∵∠1=∠2,∠3=∠4,∠2=∠3,
∴∠1=∠4,
∴BQ=BA′=5,
∴DQ=BD﹣BQ=﹣5=.
綜上所述,存在4組符合條件的點(diǎn)P、點(diǎn)Q,使△DPQ為等腰三角形;
DQ的長(zhǎng)度分別為或或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小麗做一道數(shù)學(xué)題:“已知兩個(gè)多項(xiàng)式A,B,B為 ﹣5x﹣6,求A+B”.小麗把A+B看成A﹣B,計(jì)算結(jié)果是 +10x+12.根據(jù)以上信息,你能求出A+B的結(jié)果嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面四組數(shù)中是勾股數(shù)的一組是( 。
A. 4,5,6 B. 6,8,10 C. 5,11,12 D. 10,20,26
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)25.3+(﹣7.3)+(﹣13.7)+7.3
(2)(1﹣1 ﹣ + )×(﹣24)
(3)33.1﹣10.7﹣(﹣22.9)﹣|﹣ |
(4)29 ×(﹣12)
(5)[﹣22﹣( ﹣ + )×36]÷5.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD的每個(gè)頂點(diǎn)上寫一個(gè)數(shù),把這個(gè)正方形每條邊的兩端點(diǎn)上的數(shù)加起來,將和寫在這條邊上,已知AB上的數(shù)是3,BC上的數(shù)是7,CD上的數(shù)是12,則AD上的數(shù)是( 。
A.2
B.7
C.8
D.15
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AD=5,點(diǎn)E、F是正方形ABCD內(nèi)的兩點(diǎn),且AE=FC=4,BE=DF=3,則以EF為直徑的圓的面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC≌△DEF,且∠A=90°,AB=6,AC=8,BC=10,△DEF中最大邊長(zhǎng)是 ,最大角是 度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com