【題目】如圖,矩形ABCD中,AB=3,AD=9,點E在邊AD上,AE=1,過E、D兩點的圓的圓心O在邊AD的上方,直線BO交AD于點F,作DG⊥BO,垂足為G.當(dāng)△ABF與△DFG全等時,⊙O的半徑為( 。
A. B. C. D.
【答案】B
【解析】
根據(jù)全等三角形的性質(zhì)得到BF=DF,根據(jù)矩形的性質(zhì)得到∠A=90°,根據(jù)勾股定理得到AF=4,連接OE,OD,則OE=OD,過O作OH⊥AD于H,則HE=HD=4,根據(jù)相似三角形的性質(zhì)得到OH=,根據(jù)勾股定理列方程即可得到結(jié)論.
解:∵△ABF與△DFG全等,
∴BF=DF,
∵AD=9,
∴BF=9-AF,
∵四邊形ABCD是矩形,
∴∠A=90°,
∴AB2+AF2=BF2,
即32+AF2=(9-AF)2,
解得:AF=4,
∵AE=1,
∴EF=3,DE=8,
連接OE,OD,
則OE=OD,
過O作OH⊥AD于H,
則HE=HD=4,
∴FH=1,
∵∠A=∠OHF=90°,∠AFB=∠OFH,
∴△ABF∽△HOF,
∴=,
即=,
∴OH=,
在Rt△ODH中,OD==,
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中學(xué)生騎電動車上學(xué)給交通安全帶來隱患,為了解中學(xué)2 000名學(xué)生家長對“中學(xué)生騎電動車上學(xué)”的態(tài)度,從中隨機調(diào)查400名家長,結(jié)果有360名家長持反對態(tài)度,則下列說法正確的是( )
A. 調(diào)查方式是普查
B. 該校只有360名家長持反對態(tài)度
C. 樣本是360名家長
D. 該校約有90%的家長持反對態(tài)度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的表格是某次籃球聯(lián)賽部分球隊的積分表,則下列說法不正確的是( 。
隊名 | 比賽場數(shù) | 勝場 | 負場 | 積分 |
前進 | 14 | 10 | 4 | 24 |
光明 | 14 | 9 | 5 | 23 |
遠大 | 14 | 7 | a | 21 |
衛(wèi)星 | 14 | 4 | 10 | b |
鋼鐵 | 14 | 0 | 14 | 14 |
… | … | … | … | … |
A.負一場積1分,勝一場積2分B.衛(wèi)星隊總積分b=18
C.遠大隊負場數(shù)a=7D.某隊的勝場總積分可以等于它的負場總積分
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,購買一種蘋果,所付款金額y(元)與購買量x(千克)之間的函數(shù)圖象由線段OA和射線AB組成,則一次購買5千克這種蘋果比分五次購買1千克這種蘋果可節(jié)。 )元.
A.6
B.8
C.9
D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某體育用品商店,購買50根跳繩和80個毽子共用1120元,購買30根跳繩和50個毽子共用680元.
(1)跳繩、毽子的單價各是多少元?
(2)該店在“元旦”節(jié)期間開展促銷活動,所有商品按同樣的折數(shù)打折銷售.節(jié)日期間購買100根跳繩和100個毽子只需1700元,該店的商品按原價的幾折銷售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC是等邊三角形,點D是射線BC上的一個動點(點D不與點B、C重合),△ADE是以AD為邊的等邊三角形,過點E作BC的平行線,分別交射線AB、AC于點F、G,連接BE.
(1)如圖(a)所示,當(dāng)點D在線段BC上時.
①求證:△AEB≌△ADC;
②探究四邊形BCGE是怎樣特殊的四邊形?并說明理由;
(2)如圖(b)所示,當(dāng)點D在BC的延長線上時,直接寫出(1)中的兩個結(jié)論是否成立;
(3)在(2)的情況下,當(dāng)點D運動到什么位置時,四邊形BCGE是菱形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3(a≠0)經(jīng)過A(﹣3,0)、B(1,0)兩點,與y軸交于點C,其頂點為D,連接AD,點P是線段AD上一個動點(不與A、D重合),過點P作y軸的垂線PE,垂足點為E,連接AE.
(1)求拋物線的函數(shù)解析式,并寫出頂點D的坐標(biāo);
(2)如果P點的坐標(biāo)為(x,y),△PAE的面積為S,求S與x之間的函數(shù)關(guān)系式,直接寫出自變量x的取值范圍,并求出S的最大值;
(3)在(2)的條件下,當(dāng)S取到最大值時,過點P作x軸的垂線PF,垂足為F,連接EF,把△PEF沿直線EF折疊,點P的對應(yīng)點為點P′,求出P′的坐標(biāo),并判斷P′是否在該拋物線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分別為AB、BC邊上的動點,點P從點A開始沿AB方向運動,且速度為每秒1cm,點Q從點B開始B→C方向運動,且速度為每秒2cm,它們同時出發(fā);設(shè)出發(fā)的時間為t秒.
(1)出發(fā)2秒后,求PQ的長;
(2)從出發(fā)幾秒鐘后,△PQB能形成等腰三角形?
(3)在運動過程中,直線PQ能否把原三角形周長分成相等的兩部分?若能夠,請求出運動時間;若不能夠,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com