【題目】如圖,已知拋物線的對稱軸為直線,且經(jīng)、兩點.
求拋物線的解析式;
在拋物線的對稱軸上,是否存在點,使它到點的距離與到點的距離之和最小,如果存在求出點的坐標,如果不存在請說明理由.
科目:初中數(shù)學 來源: 題型:
【題目】某校八年級學生小麗、小強和小紅到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作,已知該水果的進價為8元/千克,下面是他們在活動結束后的對話.
小麗:如果以10元/千克的價格銷售,那么每天可售出300千克.
小強:如果以13元/千克的價格銷售,那么每天可售出240千克.
小紅:通過調查驗證,我發(fā)現(xiàn)每天的銷售量y(千克)與銷售單價x(元)之間存在一次函數(shù)關系,每天銷售200千克以上.
(1)求每天的銷售量y(千克)與銷售單價x(元)之間的函數(shù)關系式;
(2)該超市銷售這種水果每天獲取的利潤達到1040元,那么銷售單價為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】五一期間,小明一家一起去旅游,如圖是小明設計的某旅游景點的圖紙(網(wǎng)格是由相同的小正方形組成的,且小正方形的邊長代表實際長度100m),在該圖紙上可看到兩個標志性景點A,B.若建立適當?shù)钠矫嬷苯亲鴺讼,則點A(-3,1),B(-3,-3),第三個景點C(3,2)的位置已破損.
(1)請在圖中標出景點C的位置;
(2)小明想從景點B開始游玩,途經(jīng)景點A,最后到達景點C,求小明一家最短的行走路程(參考數(shù)據(jù):≈6,結果保留整數(shù)).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于一個關于的代數(shù)式,若存在一個系數(shù)為正數(shù)關于的單項式,使 的結果是所有系數(shù)均為整數(shù)的整式,則稱單項式為代數(shù)式的“整系單項式” ,例如:
當 時,由于 ,故是的整系單項式;
當 時,由于 ,故是的整系單項式;
當 時,由于 ,故是的整系單項式;
當 時,由于 ,故是的整系單項式;
顯然,當代數(shù)式存在整系單項式時,有無數(shù)個,現(xiàn)把次數(shù)最低,系數(shù)最小的整系單項式記為 ,例如: .
閱讀以上材料并解決下列問題:
⑴.判斷:當 時, 的整系單項式(填“是”或“不是”);
⑵.當 時, = ;
⑶.解方程:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】要建一個如圖所示的面積為300 的長方形圍欄,圍欄總長50m,一邊靠墻(墻長25m),
(1)求圍欄的長和寬;
(2)能否圍成面積為400 的長方形圍欄?如果能,求出該長方形的長和寬,如果不能請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線交軸于、兩點,交軸于點,頂點為,其對稱軸交軸于點.直線經(jīng)過、兩點,交拋物線的對稱軸于點,其中點的橫坐標為.
(1)求拋物線的表達式;
(2)連接,求的周長;
(3)若是拋物線位于直線的下方且在其對稱軸左側上的一點,當四邊形的面積最大時,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某電信公司提供了,兩種方案的移動通訊費用(元)與通話時間(分)之間的關系,則以下說法正確的是( )
①若通話時間少于120分,則方案比方案便宜
②若通話時間超過200分,則方案比方案便宜
③通訊費用為60元,則方案比方案的通話時間多
④當通話時間是170分鐘/時,兩種方案通訊費用相等
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y1=(x-2)2+m與x軸交于點A和B,與y軸交于點C,點D是點C關于拋物線對稱軸的對稱點,若點A的坐標為(1,0),直線y2=kx+b經(jīng)過點A,D.
(1)求拋物線的函數(shù)解析式;
(2)求點D的坐標和直線AD的函數(shù)解析式;
(3)根據(jù)圖象指出,當x取何值時,y2>y1.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了創(chuàng)建全國衛(wèi)生城市,某社區(qū)要清理一個衛(wèi)生死角內的垃圾,租用甲、乙兩車運送,兩車各運12趟可完成,需支付運費4800元.已知甲、乙兩車單獨運完此堆垃圾,乙車所運趟數(shù)是甲車的2倍,且乙車每趟運費比甲車少200元.
(1)求甲、乙兩車單獨運完此堆垃圾各需運多少趟?
(2)若單獨租用一臺車,租用哪臺車合算?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com